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PREFACE

When a properly modulated laser beam illuminates a conducting surface, it causes
electrons to be emitted in such a way that the resulting electromagnetic radiation is
closely approximated by that from a distribution of electric dipoles normal to the surface.
The electromagnetic response of a conducting object to such an excitation is of interest to
The Air Force Research Laboratory of the US Air Force. A major goal of this research
has been to develop an understanding of the coupling of electromagnetic energy from the
modulated laser to objects and to the medium surrounding the objects. This is part 2 of a
final report in which specific attention is focused upon coupling of the laser-induced
electromagnetic field to structures which exhibit some of the characteristics of symmetric
antennas. A method is presented for computing the signal caused by a modulated laser
beam at a load impedance terminating a coaxial waveguide whose center conductor
protrudes into a thin-wall cylindrical tube. The tube is open at one end and, on the other,
it has a planar bottom through which the coax center conductor protrudes. Two cases are
treated: one in which the cavity is empty (free space) and a second in which it is partially
filled with a dielectric insert. The excitation is the signal radiated by electrons “kicked
off” the conducting surface by an impinging laser beam, modulated in such a way that the
electrons at the surface oscillate harmonically in time. The computations are based on a.
procedure involving the formulation and numerical solution of integral equations plus
utilizatioﬁ of the reciprocity theorem. A model was fabricated and experimental data were
obtained to corroborate the results obtained from theory and numerical analysis. A
similar analysis was conducted in the case of the common parabolic reflector antenna

illuminated by the laser-induced dipoles, but no experiments were performed in this case.
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CHAPTER 0
INTRODUCTION

This is part 2 of a final technical report of advancements accomplished under
AFOSR Grant F49620-96-1-0005, covering the period December 1, 1995, through
December 31, 1998. In this part of the report is described a method for computing, and
an experimental procedure for verifying, the coupling of a signal, caused by a modulated
laser beam, to a load impedance terminating a coaxial waveguide whose center conductor
protrudes into a an open-ended cylindrical tube as suggested in Figure 0-1. By a similar
procedure, we also propose and implement a method to determine the axial field, caused

by the same laser source, at the focal point of a conducting reflector as suggested in

Figure 0-2.
: .. Laser Light
D lglﬁlcg“ 1c Excitatigg
- ) 7 \
Probe

« Feed or Collector Point

Laser Light
Excitation

Parabolic Dish

Figure 0-1. Probe in a dielectric capped Figure 0-2. Parabolic reflector antenna
metal can illuminated by a laser light. illuminated by a modulated laser-light.
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In Figure 0-1 is illustrated a right circular cylindrical shell or tube with a planar
bottom through which protrudes the center conductor of a coax. For convenience, we
refer to the structure as a “can” connected to a loaded coaxial monopole. The can wall
and bottom are taken to be vanishingly thin perfectly conducting, as are the inner and
outer walls of the coaxial waveguide. The coax axis is the same as the cylinder axis and
its outer conductor terminates at, and is electrically connected to, the can bottom. We
consider one case in which the cavity is empty (free space) and a second case in which it
is partially filled with a dielectric insert. The insert is a solid dielectric cylinder whose
axis coincides with those of the cylindrical shell and the coax. The excitation is the signal
radiated by electrons “kicked off” the conducting surface by an impinging laser beam,
modulated in such a-way that the electrons escaping the surface oscillate harmonically in

time causing them to radiate a coherent signal at an angular frequency © .

The laser excited electrons radiate in the presence of the can and coax and a signal
is induced on the load admittance Y; términating the end of the coax remote from the
point where it joins the bottom of the can. It is this signal at the load, as a function of the
laser beam characteristics, that one wishes to determine. For a vanishingly small spot of
Jaser light on the conducting surface, the radiating source is modeled as an electric dipole
normal to and located at the surface. For a larger spot, the source is taken to be an
ensemble of normal dipoles whose amplitudes and phases are dictated by the
characteristics of the laser light and the spot. The dipoles radiate in the presence of the
entire can-coax structure and, therefore, all parts of the can and coax, together with the
terminating load, must be accounted for simultaneously in any analysis for determining
¥, the signal at the load Y. In this work only the small-spot case is considered. The |

extension to the larger spot is trivial.

Of course, one can compute the radiation from the dipoles on the conducting
surface of the can and the coupling to the terminating admittance, but one must be aware

that doing so is not a simple undertaking. The dipoles radiate in the presence of the entire




can-coax structure and all parts of the can and coax are coupled Fortunately, since one
needs to know the signal only at the load, which electro:rhagnctically speaking occupies a
vanishingly small region of space, one can obtain the desired informatipn by solving a
radiation problem and employing the reciprocity theorem. This is far simpler than it
would be to solve the reception problem directly in which one must allow the laser
stimulated dipoles to radiate in the presence of the loaded (load admittance ¥, in place at
the end of the coax) coax-can structure. One might designate this procedure indirect but it
allows one to obtain the desired signal far more efficiently than would a more direct
method necessitating the solution of a vector integral equation rather than the scalar
equation of the indirect procedure. The indirect approach, though far less complex than

the direct, does not sacrifice rigor.

The solution of the problem of determining the signal induced by a modulated
laser beam at the load which terminates the coax of the coax-can structure, has been
reduced to two steps: (1) computation of the electric field at points on the coax-can
structure where the laser light might fall, caused by TEM excitation at the coax terminus,
and (2) application of the reciprocity theorem to obtain the signal at ¥, caused by the
Jaser light. From knowledge of this electric field, the value of the load admittance, and the
value of the impressed source, one can determine the signal induced in the load

impedance by invoking the reciprocity theorem.

Since the can, the center-joined coax, and the dielectric insert form a circularly
symmetric structure, the field radiated by the structure due to excitation at the coax
terminal is circularly symmetric, which property allows for additional simplification in
the radiation problems associated with the indirect approach. The effort to determine
radiation from the coax-can structure is, itself, partitioned into two phases. The first is the
computation of the radiated field when the dielectric plug is absent. The formulation of an
integral equation and numerical solution technique needed to solve for the currents

induced on the coax-can structure in the absence of dielectric, from which one can find




the radiated field directly, is reported in Chapter 1 (Electric Field Integral Equation for
Conducting Bodies of Revolution). The second is the computation when the plug is
present. When the dielectric plug is introduced into the coax-can structure, the single
electric field integral equation (EFIE) technique is inadequate to account for the resulting
inhomogeneous-medium: problem, owing to the presence of the dielectric which partially
fills the can interior. Coupled integral equations sufficient to account for this new feature
must be formulated and methods for solving them must be devised. The coupled integral
equations developed for this purpose incorporate the operator found in the familiar
magnetic field integral equation (MFIE) so a brief discussion of the MFIE applied to the
geometry of interest is provided in Chapter 2 (Magnetic Field Integral Equation for
BOR). Formulations of sets of coupled integral equations for structures comprising
inhomogeneous regions made up of different dielectric materials contiguous with
conductors are presented in Chapter 3 (Analysis of Bodies Containing Conductors and
Dielectrics.) This section also contains an outline of a procedure for solving these
coupled equations. This section serves two purposes. First, it conveys to the reader some
of the type structures or radiators that our integral equation method can be used to
analyze. Second, it conveys a sense of confidence in the results obtained by the method.
Most of the structures illustrated in the figures in this section come from recent
publications in the literature. They are selected on the basis that our method can be used
to solve the problem in the literature with which the structure is associated. By
comparing our data with that published by others, we corroborate our findings and gain
confidence in our method and data. Our analysis has been intentionally made sufficiently
general that it can be used to solve, as special cases, a number of problems found in the

recent literature.

The procedure employed for computation of the signal caused by the laser beam

at the load admittance ¥, , which terminates the end of the coax remote from the can-coax




junction, is presented in Chapter 4 (Coupling to a Probe in a Dielectric Capped Metal

Can by a Laser-Light).

An intermediate step in the implementation of the technique for computing the
desired signal at the coax load is the determination of the normal component of the
electric field at points on the surface of the structure when the coax is excited. The
analysis leading to the needed values of normal electric field is described in Chapter 5
(Computation of the Near Field). Illustrative data are also presented to support the

validity of the computations.

In order to obtain data to enable us to corroborate further the results obtained from
theory and numerical analysis, experiments were conducted. Models of the can and coax
were fabricated and a set of probes for measuring surface current and charge were
designed and built. Admittance, surface current, and surface charge were measured.
Detailed descriptions of the fabrication of models and probés are presented in Chapter 6
(Experimental Apparatus and Measurement). Instrumentation, probe theory, and

experimental procedures are discussed in this section too.

The results of theory and experiment sze presented and discussed in Chapter 7
(Discussion of Results and Corroboration of Theory). There it is observed that
excellent agreement is achieved between computed and measured results in almost all

cases. Where the agreement is only “good,” explanations are offered.

In chapter 8 (Fields At The Focal Point Of A Reflector Antenna Due To Laser
Light Illumination), the reciprocity concept is applied, with a minor modification, to

determine the axial electric field at the focal point of a reflector antenna due to a laser

light induced field.




CHAPTER 1
ELECTRIC FIELD INTEGRAL EQUATION FOR CONDUCTING

BODIES OF REVOLUTION

1.1 Introduction

Since many antennas are rotationally symmetric and fed by coaxial probes
through either an infinite or a finite ground plane, it is important to have reliable methods
to accurately predict the input impedance of such structures. The coupling between wire
antennas and conducting bodies of revolution (bor) has been investigated extensively.
Various wire/BOR . configurations are depicted in Figures 1-4 and 1-5. These

configurations are representative of many practical situations.

For a dipole mounted on a cylinder, a model which depends on the determination
of the elements of an array of magnetic ring sources has been developed [1]. Tﬁe
interaction between the radiating portion of the antenna and its feed system has been-
studied by methods based on coupled integral equations [2]. A thin wire attached to a
conducting disk and a conducting BOR and fed at the attachmeat point has been
investigated by various methods [3]-[6]. The thin wire attached to 2 BOR has also been
investigated by a scheme invoNing the introduction of a special junction basis function
[7]-[8].The electric field integral equation (EFIE) is used with the MoM for treating
problems of arbitrary wires attached to arbitrary conducting surface configurations [9].
The coupling between the wire and a conducting BOR has been investigated, including
the case where the wire is attached on axis to the BOR [10]-[11]. Thin or thick
rotationally symmetric antennas have also been investigated by using an EFIE followed
by the MoM [12]-[14]. The coupling between a wire antenna exciting an infinite circular
conducting tube has been analyzed by a technique which incorporates an analytically
determined Green’s function [15]-[16]. The sleeve and top-hat monopole antenna have

been studied by modal expansion methods [17]-[19].
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In this chapter we study the input impedance and currents of the wire/BOR by
formulating an EFIE and solving it numerically. The wire/BOR geometry is restricted to
be rotationally symmetric. The coaxial aperture wire/BOR geometry is shorted and the
wire and BOR are treated as parts of a whole body of revolution. Either the delta gap or
magnetic frill source [20]-[21] is used as the excitation. Data are presented and compared
for several geometrical configurations found in the literature in order to verify the
accuracy of our solutions. For a special case when the wire probe is mounted at the
bottom of a conducting can, the input impedance is measured and computed. Good

agreement between measurements and numerical results is obtained.

1.2 Formulation

Consider a perfect electrical conductor (pec) body in an infinite homogeneous
space. Let S denote the surface of this body. An electric field E’, defined to be the field
due to an impressed source in the absence of the scatterer, is incident on the body and
induces a surface current JonS . This current in turn radiates a scattered electric field
E’. The scattered electric field E° can be expressed in terms of the magnetic vector

potential A and the electric scalar potential @ as

E =—joA-VO, (1.1)

where
A =p[[IE)G(r;r)ds', (1.2)
o(r) = Jkﬂ [[(v:-30) Grryas', (1.3)

in which the free space Green’s function is defined as

- jkle=r'|

G(r,x')= (1.4)

4njr -r'|’

n=+p/€, and k= mJu_a . The total electric field may be viewed as the sum of the

incident and scattered fields and must satisfy




[E’(r)+Ei(r)]m =0, res (1.5)

on the conducting surface where “tan” denotes the tangential component of the field on
the surface S . Combining (1.1) through (1.5) one can formulate an electric field integral

equation (EFIE) to determine the induced electric current on the scatterer:

—j%{kz jsj J(r')G(r,r')dS'+vjsjV;.J(r')G(r,r')dS'} =-E. (r), reS. (16

tan

Let S be the surface of a body of revolution (BOR) where the BOR is formed by rotating

a curve, called the ‘generating arc,” around the z axis as shown in Figure 1-3.

generating arc

ot | /4@@
t |

g~ L J
: -,

Figure 1-3.  The generating arc and unit vectors of BOR.

Assume that the excitation is of the form

E = Ei(p,2)p+ Ei(p,2)2 %)
with E; =0. Under the condition imposed upon the excitation, the current induced on the
BOR has a component only in the ¢ direction

I@®)=J,0t | (1.8)




and the resulting scattered electric field has no ¢ component. Under these conditions,

(1.6) can be written as
[E"(r)+E’(r)].i =0, reS. ' (1.9)

The surface divergence and gradient operators are given by
v, J==——(pJ,) (1.10)
Vf = il f (1.11)
o '
on the BOR surface, allowing one to write (1.9) és
JT] 2 "Nt 3 [ ' _?_ _a_ ! ! Py e . $
__k_{k jsj Jr) B Gl ) ds'+— J’sj = J(r)G(r,r')dS }_ Er)i, res. (1.12)

Since
t=sinyp+cosy 2 (1.13)

the dot product t -t in (1.12) can be performed and (1.12) becomes

Tnx : —JkR
—jz?t;{kzli(p'J,(t’))(sinysiny'cos(¢—¢')+cosycosy’) eR dy'dr’
a1t o e .
=V [=(o'J (¢ do'dt' y=-E(t),t €(0,T 1.14
+6t£i5t’(p (1) 7 [ } (1), t€(0,T) (1.14)

In (1.14), T is the total arc length of the generating arc and p is the radial
displacement, parallel to the xy or p¢ plane, from the BOR axis (z -axis) to the general
coordinate point (z,¢) on the surface of the BOR, yand y' are defined as the angles
between the BOR axis and the unit vectors tand t', respectively, and R is the distance
between an observation point r or (p,$,z) and a source point r'or (p',¢',z'). In

cylindrical coordinates R can be computed as

R=r—r|=(p—p') +(z—2')* +4pp'sin*(($ - ¢")/2) . (1.15)
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Since all of the quantities of interest are independent of ¢, one can set ¢ equal to some
convenient value without affecting the value of the quantity. We select ¢ =0. In (1.15)

rand r' fall on the surface at ¢ and ¢’ so p=p(t), p' =p'(¢'),z=2(t),and z' =Z'(¢').

1.3 Numerical Scheme

In this section the reader will find an outline of a numerical scheme for solving

the integral equation (1.14).

On the generating arc, N +2 points are defined, beginning with 7, and ending
with t,,,, where the point identified by ¢, is at arc displacement ¢ =¢,, measured along
the arc ‘ﬁom the reference at ¢ =1, =0. We require t, <#, <t,....ty <ty <ty, in our
point identification scheme, which enables one to define positive arc displacement in
terms of a progression from lower to higher index number nof z,. A simple piecewise-
straight-line approximation to the generating arc is obtained by connecting #, to ¢, # to

tyseews B, 1O £ .ty to ty, with line segments as shown in Figure 1-2. The points,

PR
for-eslys-slyns can  be defined, respectively, by the cdordinate points
(PorZ0) s-+s(PnsZn) s+ (Pys1» Zysr) - Together with the assumed circular displacement pb,
for ¢ e(-n,mn), the arc displacement ¢,, n=0,12,..,N+1, or the corresponding
coordinate values (p,,z,), define a discretized piecewise linear approximation to the
surface of the BOR. It is this set of coordinate values (p,,z,), n=012,..,N+1, that
serves as input of geometrical information to the numerical solution technique. In Figure
1-3 are depicted points ¢,_,, ¢, and ¢,,, on the generating arc, plus the n" and (n+1)"
line segments of the polygonal line approximation of the arc. The lengths of these

segments joined to ¢, are designated A, ,, and A,,, in order to identify them as the

lengths of the segments associated with ¢,, and their values are determined from

(pn—19zn-l)’ (pn!zn)’ a‘nd (pn+lszn+l):

Drirs = @0 = Prst} + (2, =2, m=12, N +1. (1.16)
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<> tN+1 tN

/.\{N— 1

Figure. 1-2. Numbering scheme and polygonal line approximation of the generating
arc.

X

Figure 1-3.  Illustration of the points on the generating arc and the line segments the
lengths of the line segments and angles
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The midpoints of the n*and (n +1)" line segments are designated ¢, ,,and ¢,,,,. The
coordinates (P, Zysy,) corresponding to values of arc displacement ¢,.,, along the

discretized generating arc are not among the input data but can be determined from

I (o +p,)/2 and z,,., =(2,4 +z,)/2.

At this point we rewrite (1.14) in terms of kernel functions X and X, in the form
' T
0 2 " si vy’ <! ' . gt '
-J z—k{k [1,¢")[siny siny 'K, (5;1") + cosy cosy'K(5;)] dt
T
0

a f a ’ . gl r\ i
+5;'(|:—a-t—,l,(t YK (") dt } =—Ei(£), 1 €(0,T) (1.17)

where I(t)=2npJ,(t), is the total current and X, and K are defined by

1 Tecos¢’
K () =— [—dy' , 1.18
() =5 [ (1.18)
1 fei® ' |
K(t;t)=— dy’ , 1.19
(5t)= o =7 1.19)

in which

R=y(p-p' ) +(z-2') +4pp'sin’(¢' / 2) . (1.20)

The current I, which is the unknown quantity in the integral equation of (1.17), is

approximated by a linear combination of N piecewise linear basis functions

I(t)~ ﬁ:InAn(t) (1.21)

where {I,} are the N unknown coefficients of the finite-series representation of L()
and where the known n" expansion function represented by A, (¢) is

(¢

-t
il te(t,t,)
An—l/2

A (0)=] bimh o pe(r,t ) (1.22)

n-1/2

0 , otherwise

\
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The basis or expansion function A,(¢) is commonly referred to as a triangle function or,
sirﬂply, as a triangle. Théy not only facilitate computation of the derivative of the current
in the equation, but also they lend themselves to enforcement of the condition that the
current goes to zero at edges. When (1.21) is substituted into (1.17), one introduces N
unknown coefficients into the latter equation. In order to solve for the N unknown
coefficients, one must have the same number of equations. We accomplish this by testing

each equation by a testing function. We multiply (1.17) by pulse functions defined by

1 ’ t e(tm-1/2 ’tm+1/2)
I () = . (1.23)
0, otherwise

and integrate the result over ¢ €(f,,ty) for m=12,.,N. This procedure leads to the

following set of linear algebraic equations
2] 14]= 7] . (1.24)

in which [Z,,] is a matrix whose elements are

2 ! tnsyia
Z = -jz-%{%(Am‘,,z COSY, + A,y COST}) (cosy; IK(tm;t')dt' +cosy? fK(tm;t')dt,J
n

In-112 tn
k2 L tM-IZ
+—2—(Am—1/2 SinY:n +Am+l/2 SinY;l) SinY; J'Kl(tm;t,)dt’-i-smyz _rKl(zm;t’)dt'

tn-v2 I

1 t, 1 st '
+ A j[K(tmn/z;t')'" K(tm-I/Z;t')] dt'- j[K(th/Z;t,)_K(tm—llz;t,)] dt’}- (1.25)

n-1/2 ¢ n+l/2 g,

n-l

The first four integrals of (1.25) result from approximations of the integral of the triangle
basis function by an equal-area, unit amplitude pulse function to facilitate the integration,
while the remaining integrals reflect the piecewise constant derivative of the triangle
basis function employed to represent the current I,(¢). [Vm] is a column vector whose

elements are computed from

tma1r2 :
V.= |Et)dt, m=12,.N. o (1.26)

tm-12
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1.4 Singularity Analysis

In computing matrix elements from (1.25) one should be aware that the integrals
contained therein may possess singularities when the field point ¢z, is within the source
region. The elements must be computed accurately and efficiently so the singular
integrals must be treated carefully. A discussion of these singular integrals is given in this

section. We employ the following coordinate parameterization
p'=p,+1'siny,, (1.27)
z'=z,+1'cosy,. (1.28)
and assume that the observation point is fixed at some point ¢ =1, = (p,,z,) within the

source segment of length Az. For all terms we then have that

(z-2')=2,-2,—1'cosy,, (1.29)
(P-p)=p,—p,—1'siny,. (1.30)

Consider the integral
= _j J'cosd)’ d¢ dr' (1.31)

which occurs in discretized form in (1.25). As t—¢ and ¢'—>0, R—>0 which
means that the integrand of (1.31) is singular. Adding and subtracting the singular term
_IIE to and from the integrand, one obtains

1=%jjiﬁ%fid¢dt L jj db'dr’. (1.32)

At-m

The first integral in (1.32) has a well behaved integrand and can be integrated numerically

with ease. The second integral may be written as

j j do'dt == j Kz(e’j) dr (1.33)

At

where x(B) is the complete elliptic integral of the first kind defined by
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n/2 1
= —d : 1.34
x(B) j ] ; (134)
and
=_~/:_ (1.35)
with

B=\(p+0) +(z-2) (136

Of course, the integrand of (1.33) now possessés the singularity. However, as ¢ — ¢’, one

can show that

X , 1 ) |
R, - 2p[1n4+1n|R2| lanxl] (1.37)

where
R=p-p) +(z-2) . (1.38)

Only the last term in (1.37) is singular but it can be integrated analytically, so we add it to

and subtract it from the integrand of (1.33) to obtain

d J’K(B) dt' = j[K(B) — R, |]dt'——— [m|Rar. (1.39)
Toal R
The first integrand on the right hand side is no longer singular and can be integrated
numerically. The second integral has a singular integrand but this integral can be

evaluated analytically in cases of interest.

In the computation of matrix elements of (1.25), the observation point is within
the source segment when m = n. In this case the second integral of (1.39), subject to the
discretization of the previous section with m = nis readily evaluated:

-ijm|z|dz'=i[ -1)-L L)+ ] = l)[l+1n] (1.40)
Y4 np P

4
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where /, and , represent the local integration limits of the integrals of (1.25). The integral

I can be rewritten in the following forms,

I= u[1+m3]+3j[ﬁﬁ—)+i1n|&|]dﬂ
[ 2p

np A xl R
+ijwd¢rdt' m=n (1.41)
2n s ¢ R ’ '
and
b 1 —ij_
1=Zjﬁ@dz'+ijjﬂs“1’—e—-—1d¢w, men. (1.42)
Ty 2n 7 R

I of (1.41) and (1.42) are to be used as the basis for evaluating the integrals which
appear in the matrix element definitions of Z,, in (1.25). Taking advantage of (1.41) and

(1.42), one will find the integrals called for in (1.25) easy to evaluate.

1.5 Excitation

The EFIE analysis given above is valid as long as the incident field is rotationaily
symmetric about the z-axis and the incident electric field does not contain a (]
component. One of the sources that creates this kind of field is a z-directed hertzian
dipole located at some point on the z axis. Another, which is utilized in this study, is the
radiation from the annular aperture at the end of a coax, properly located and oriented
with respect to the axis of revolution. Coaxial aperture feeds for the probe-fed BOR
antenna are modeled as magnetic fiill sources in this work. Consider a coaxial aperture
terminated in an infinite ground plane. Using the equivalence principle and image theory,
we may determine the radiated field as that caused by a magnetic frill. If the TEM mode
assumption in the coax is made, the aperture distribution of the coax for a 1-Volt

excitation 1S

1
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The corresponding magnetic current distribution is

-1

M=—- 1.44
¢ pln(b/a) (1.44)
and the electric vector potential of this source is
Fo=- cos £ 1.45
¢ 2nm 1n(b/a)” ¢ (143)

where R is defined in (1.20). Expressions for the field components are as follows [20]-

[21]
E = He-ﬂ (kR +1)(z — ") cosd' db’ do' (1.46)
2 21t]n(b/ )R
1 e ’ |
E'—ann(b/a)-([[ R ]p,=ad¢ (1.47)
Jk/m) j j cos¢’d¢’a’p'. (1.48)

H,= 2nin(b/a)?

1.6 Imperfectly Conducting BOR

To formulate an integral equation to account for the losses on the imperfectly
condueting BOR, the impedance boundary condition is applied on the surface of the

structure

[E(r)+E(M)], =3r)Z(r), res, (1.49)

in which Z(r) is the surface impedance of the body. The integral equation of (1.17) is
modified to account for this modification as
—Jﬂ{kz-‘.l(t )[siny siny'K,(£;¢") + cosy cosy 'K (t;¢')] dt’
T )
+§;J5£i—,—l,(t')K(t;t')dt } I(t) Z(t) =-Ei(t), te(0,T). (1.50)
0 . .
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This integral equation is solved numerically according to the numerical solution method

discussed in an earlier section. Hence, the matrix elements for this case are not given.

1.7 Corroboration

In order to ascertain the correctness of the integral equation formulation, the
numerical solution technique, and the computer code developed to implement the
solution for the current on the coax-can structure of Figure 1-5(d), we have compared our
results with those which are available from the recent literature. We have made our
solution tool very general so that it would apply to our structure and to a wide class of
others of the type illustrated in Figures 1-4 and 1-5. Because of the generality of the
techniques reported here, we have been able to solve numerous problems found in the
literature that have been solved by other methods. Several structures/problems in this
category have been selected as cases against which to test our work. In each case, data
from the corresponding solution in the literature are comparéd with our data and tﬁe
agreement is found to be very close, lending support to the correctness of our method.
However, in view of the effort required to reproduce a large amount of data from the
literature in this report, no attempt is made here to present data of other workers in the
figures displaying our data. The various examples discussed do reveal the versatility of
the solution method reported here and, if one were inclined to compare data, one could do

so readily.

Figure 1-6 shows the current induced on the sleeve monopole antenna driven by a
delta gap generator [17]. Figure 1-7 shows the input impedance of a biconical antenna
made up of two inverted conducting cones mounted on an infinite ground plane. The data
compare very favorably with data from [13]- [14]. In Figure 1-8 and 1-9 are illustrated
the input impedance and current distribution for a circular top-hat loaded monopole
antenna mounted on an infinite ground plane [19]. The current is plotted against

displacement from the edge of the circular top-hat to the feed point. In Figure 1-10 is seen
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the input impedance of a monopole antenna mounted in the center of a finite circular
ground plane [3]. In Figﬁre 1-11 is shown the current distribution of a monopole antenna
attached to the bottom of a conducting can. This structure is very similar to one of the
configurations of ultimate interest in this project. The current is plotted against arc

displacement with the reference at the top of the monopole

Figures 1-12 and 1-13 depict the current induced on the wire and tube walls for a
wire antenna residing coaxially inside a conducting tube of infinite extent. Our analysis is
capable of solving for the current on such a sfructure when the frequency of operation is
below the cut-off frequency of the infinite conducting tube viewed as a circular
waveguide. As seen from the figure, the real part of the current on the wire is zero due to

the cut-off condition [15]-[16].

Experimental and theoretical data are compared next, again to enable us to
demonstrate the validity of our work. In Figures 1-14 through 1-17 one finds, for tﬁe
purpose of comparison, measured and computed input admittance of a monopole attached
to the bottom of a brass can of Figure 1-5(d). Losses due to the finite conductivity of the
brass are accounted for in the analysis by making use of the well known surface
impedance approximation. It has been ensured that the thickness of the walls of brass can
used in this measurement was at least ten times greater than the skin depth at the

frequency of operation. The measured and computed data agree very well.
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CHAPTER 2
MAGNETIC FIELD INTEGRAL EQUATION FOR BOR

2.1 Formulation

In this section we outline the derivation of the magnetic field integral equation for
the zero order body of revolution subject to excitation in which E, =0.Let § denote the
surface of a closed PEC scatterer. An incident magnetic field H', defined in the absence
of the scatterer, induces surface currents JonS. The magnetic field integral equation

(MFIE) is derived from the requirement
J=fx(H'+H'),on §* (@2.1)

where @i is an outward unit normal vector to S*, the exterior side of the surface . Since
the tangential magnetic field is discontinuous at an electric surface current, . nxH* is
evaluated in the limit as the surface is approacl;ed from the exterior as suggested by the
superscript “+.” It can be shown by a limiting argument that for observation points r nbt

on an edge,

ﬁxH‘=1imﬁx-1—VxA=%J(r)+ﬂﬁ(r)xJ(r’)xV'G(r,r')dS’, res, (2.2)
K s

ror’

in which G(r,r')is the free space Green’s function and A is the magnetic vector
potential. From (2.1) and (2.2), a magnetic field integral equation (MFIE) can be

formulated to determine the induced electric current on the scatterer:

_%J(r)+ﬁ A0 x[J(r') x V'G(r,r)]dS’ =—(r)x H(r) , reS".  (23)

The MFIE in (2.3) takes a slightly different form if the observation point is
allowed to lie on an edge. It can be shown by a limiting argument that the MFIE in (2.3)

takes the following alternate form
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BI) nxj It )x V'G(r,r')dS' =axH' , res, 2.4)
T 2

where P is the exterior solid angle between the two limiting tangent lines at the point of
tangency approached by the observation point. Note that, on a surface with no edge
B =, in which case (2.4) is identical to (2.3).

Let S be the surface of the body of revolution illustrated in Figure 2-1. We
assume a rotationally symmetric excitation in which E,=0. This excitation induces a

t directed current on the BOR surface. Under this condition (2.4) becomes

ZENY P A————

+2pcosy’sin’(¢’ / 2)][1+ ij] R3 'dt' = Hi(1), teS, (2.9

where Rand I,(¢) are defined in the previous in Chapter 1.

2.2 Numerical Solution

A method for solving (2.5) is now presented. In the following numerical scheme,
all indexing and parameterization of the generating arc are the same as those discussed in
Chapter 1. Maintaining the same discretization has the advantage that the currents are
represented at common arc points and equation enforcement takes place at the same
points when the HFIE and the EFIE are used in a common formulation, which is very

convenient in the analysis of dielectric bodies.

Since no derivatives of current appear in (2.5) the unknown current is expanded

into pulse basis functions as

I(ty= Y LIL () (2.6)

n=1
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where II is as defined and the complex constants {1,} represents the complex value of
the current I,(¢) at the point ¢, . Zero half pulses are placed at ¢, and #,,, to comply with
the boundary condition I,(z,) = I,(ty,)=0. The current representation in (2.6) is next
substituted into (2.5) and the equation is enforced at the match points ¢,. The resulting

equation can be written in matrix form as

.1 [2)=[H.] @7

where [In]is a column vector containing the unknown current coefficients, [Hm] is a
column vector whose elements are sampled values of the incident field given by

H, = H.(t,), and [T,,] is a matrix whose complex-valued elements are

B 6 .1 t T 1 thanz T
—Pm Zmn_ " K(t ;t', "Ndo'dt' + — Ktm;t', Ydo'dt' (2.8
= Cn Snjj (1,:¢',0")dd w{_[( o) db 2.8)

where

K(t:1',0) =[((p~p)cosy’ —(z = 2')siny’)cos¢’

+2pcosy'sin?(¢'/2)] [1+ ij]%, 2.9)

B, is the angle defined in Figure 2-1, and$,,, is the Kronecker delta defined as

sm={1’ m=n (2.10)

0, otherwise "

Figure 2-1.  Illustration of the solid angle f,.




CHAPTER 3
ANALYSIS OF BODIES CONTAINING CONDUCTORS AND

DIELECTRICS

3.1 Introduction

Electromagnetic radiation and scattering problems involving combination of
conductors and dielectric materials have recently received much attention from
researchers since their applications occur in important antenna problems such as the
control of radar cross-section, dielectric loaded antenna design, the design of microwave
devices and microwave printed circuits, etc. These problems are usually analyzed using
surface integral equation methods (SIE), differential equation methods (DE), and hybrid |
techniques. Other methods employing eigenfunction expansions or Green’s functions are
suited only to simple structures whose boundaries coincide with a constant coordinafe
surface in a separable coordinate system. Each of these methods exhibits advantages in
particular types of applications. Comparing the DE and SIE approaches, we note that the
former has simple formulation, results in more unknowns, but yields a sparse matrix,
whereas the latter is rather difficult to formulate for complex media, results in fewer
unknowns, but yields full matrices which may be costly to solve when the structure is
very large. One advantage of the SIE approach is that the radiation condition is
automatically incorporated through the free space Green’s functions, whereas the DE
approach requires an approximate boundary condition to enforce the radiation condition
which may lead to an extremely large number of unkmowns. A hybrid approach
represents a synthesis of coupled integral and differential equation formulations and may
be adopted for problems consisting of both inhomogeneous and homogeneous regions.
However, the formulations and especially the numerical implementation of the hybrid
techniques usually require extensive effort. We choose to circumvent the major

difficulties by employing surface integral equation formulations.
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A number of different integral equation formulations for a homogeneous dielectric
body have been used by various authors. One may consult [1] for some of these
formulations and [2]-[4] for a review of past research using surface integral equation

techniques and other methods.

The numerical solution of problems involving both conducting and dielectric
bodies have been studied extensively and the literature is voluminous. Different integral
equations have been formulated for scattering from bodies of revolution of arbitrary
composition [6]-[10] and arbitrary shaped three-dimensional bodies [11]-[14]. The widely
applied surface integral equation formulation for coupling to a perfectly conducting body

with a dielectric region is the method of Mautz and Harrington [5 Equation (15)-(18)].

TE and TM plane wave scattering from multiple perfectly conducting and
homogeneous lossy dielectric cylinders has been studied and different surface integral
equation formulations have been utilized [15]-[21]. In these formulations, dielectric and
conducting cylinders with intersecting surfaces have been treated as if they were disjoint.
A similar solution has been presented for a homogeneous dielectric cylinder partially
_covered by zero thickness conductors excited by both TE and TM plane waves [22]. In
this formulation conducting and dielectric bodies are treated together. A two-dimensional
conducting body with a dielectric filled cavity has been analyzed, by the same method
[23]. Cut-off wavenumbers of partially dielectric filled waveguides of arbitrary cross
section have been determined from such techniques [24]. Conducting strips loaded by
dielectric cylinders have been investigated by methods incorporating analytically
determined Green’s functions in integral equation kernels and numerical solution
procedures [25]-[30]. Volume and surface integral equations have been formulated and
solved numerically for problems of scattering of plane waves by coated and partially
coated cylinders [31]-[33]. Some examples of plane wave scattering from composite

cylinders employing differential equation methods are found in [34]-[35].
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In recent years, dielectric resonator (DR) antennas have been studied at
microwave frequencies [36]. A class of axially symmetric dielectric resonators excited by
a coaxial probe extending into the dielectric material from below through a ground plane
has been extensively investigated by surface integral equation methods [37]-[43]. Electric
and magnetic equivalent surface currents are used as a basis to obtain a system of integro-
differential equations. These equations are then solved by the MoM. Dyadic Green’s
function techniques are well suited for the analysis of probe-excited, hemispherical
dielectric resonator antennas [44]-[47]. One of the fundamental configurations of the DR
antenna is the axially probe-fed cylindrical DR antenna. Input impedance and radiation
characteristics of this antenna have been found from solutions of integral equations
possessing analytically determined Green’s functions [48]-[49]. Other investigators
employ methods based on FDTD [50]. The eigenmode expansion method has been used
to evaluate the resonant frequency of these antennas [51]. The eigenmode expansion
method has also been used for computing the currents on a dielectric loaded top-hat
monopole antenna [52]. The null field formulation has been used to analyze rotationally
symmetric dielectric coated antennas [53]. Volume and surface integral equations find |

application for analyzing dielectric coated wire antennas [54].

In all surface integral equation techniques cited above, both electric and magnetic
equivaient currents are incorporated in formulations. Approaches adopted in this report
are based on integral equations which involve only equivalent electric currents. If two
dielectric regions exist in the structure of interest, two equivalent electric currents are are
employed in equivalent models from which fields appropriate to the two regions are
represented. These currents reside on the boundaries separating homogenous dielectric
regions, and each current is used to represent the field orf one or the other side of the
boundary. Continuity conditions for tangential electric and magnetic fields are then
enforced at the dielectric interface. Once these currents are determined all other

electromagnetic quantities can be obtained.
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Using two equivalent electric currents at the dielectric interface simplifies the
numerical formulation and generally improves the conditioning and, hence, the accuracy
of the solution. As is true of mixed current formulations, our method suffers the
disadvantage that the resulting integral equations may not have a unique solution at the
resonant frequencies of the cavity formed by the dielectric boundaries. Of course, any
correct formulation can be modified to arrive at equations whose solution is unique but at
the expense of additional equation complexity. In the case of the present work, the
conditions under which solutions are not unique can be predicted and avoided without
loss of information sought. Therefore, rather than facing the additional complexity
attendant to equations which do have unique solutions, we choose to implement the
simpler and more efficient analysis while avoiding the false resonances at which non
uniqueness occurs. Another feature in any surface integral equation solution method
developed for structures involving dielectrics is worthy of mention. The equivalent
currents obtained by solving the integral equations are not all “physical currents” which
can be related to a real quantity such as a surface current on a perfect conductor. These

equivalent currents do enable one to compute true fields in all cases.

We consider in this part arbitrary conductors which ina;* be open or closed, may
be disjoint, may have intersecting surfaces, may be completely covered by a single
homogeneous dielectric material, or may be partially covered by one dielectric and
partially by another. Although the method is applicable to multiple conducting and/or
dielectric bodies, a one-conducting and é one-dielectric body example will be considered
to illustrate the procedure. Selected results for two dimensional bodies and bodies of
revolution are obtained from the computations using this method and are compared with
data published by others. We present illustrative data for far fields of two dimensional
structures and for input impedance and current distribution of antennas which take the

form of dielectric-loaded bodies of revolution.
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3.2 A Single Homogeneous Dielectric Body

Consider the homogeneous dielectric body of Figure 3-1(a) in homogeneous space
with bounding surface S . The surface S represents the interface between the dielectric-
filled region and the exterior space. The incident field (E‘,H’) is the field produced by
external sources in the absence of the scatterer. The properties of the regions exterior and
interior to the dielectric body are characterized by the medium parameters (y,,€,) and
(n,,€,), respectively. In Figure 3-1(a), the total field outside the dielectric region is
represented by (E°,H®) while the field inside is represented by (E*,H?). Both media
may be lossless or lossy. Guided by the uniqueness theorem, we develop two models, one
of which is electromagnetically equivalent to the original structure and field outside the

dielectric body while the other is equivalent inside the body.

(E<H") o (E-H) .
(EI’HI) (EI’HI)
(THE) )@ (m, €. }@ (g€
// (9 ‘\\ S as) \\
\ /
{ P [ e
\\\—,/” N e N /”—\\\)Jd
S S S
(@) (b) ©

Figure 3-1. A single dielectric body in a homogeneous free space. (a) original
problem, (b) exterior equivalence, (c) interior equivalent problem.

A model which can be made equivalent to the original structure and source in the
region exterior to S is shown in Figure 3-1(b). In this model the all space is filled with the
homogeneous material (i,,€,) of the external medium, an equivalent electric current J°
is placed on an imaginary surface S, and the original source is restored. The imaginary
surface S is the same as the bounding surface of the body. The total field in the region
exterior to the surface S can be represented as a superposition of the incident field and

the field due to J*:
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E¢(r)=E'(r)+&(r;J°%) (0.1)
He(r)=H(r)+¥(r;J°). 0.2)

In the model constructed to be equivalent, ultimétely, to the original structure interior
to S, the entire space is filled with the material (p,,€,)of the interior region and on the
imaginary surface S an electric surface current J 4 is introduced as illustrated in Figure
3-1(c). The total field interior to the surface S in the model of Figure 3-1(c) is due to J¢

only
E‘(r)=&(r;J%) (0.3)

HY(r) = ¥4 (r;J9). 0.4)

Enforcing the continuity of tangential components of the total electric and
magnetic fields at §, we obtain two coupled equations in terms of the two unknown
surface electric currents as

[se(r;Je)—ad(r;J")]mn =-{E'(r)], ,reS (0.5)

tan’

[xe*(r; J°) - %"T(r;J")]tan =-[B®)] . res. 06)

In (0.6), the supérscripts «}” and “T” indicate that the surface S is approached from

the exterior and interior, respectively.

The fields due to the equivalent currents J¢ and J¢ are expressed in terms of
vector and scalar potentials which incorporate homogeneous space Green’s functions
appropriate for the medium of each equivalent model. This causes the fields to satisfy
Maxwell’s equations in the two models and the radiation condition is satisfied by
selecting the “outward wave” Green’s flmction for the potentials of the fields in the
exterior model. The fields determined as prescribed above satisfy Maxwell’s equations
and the radiation condition and they approach common values at points on the surface S'.
Hence, the conditions of the uniqueness theorem are satisfied implying that the fields of
the equivalent models are unique. The fields of the equivalent models satisfy all
conditions of the fields in the originally specified structure and sources, so the unique

fields of the equivalent models are identical to the unique original fields.
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3.3 Conductor Surrounded by a Dielectric

In Figure 3-2(a) is illustrated a pec body whicl‘i. is completely surrounded by a
homogeneous region containing dielectric material characterized by. (u,,€,). The
dielectric-surrounded pec body is in turn embedded in a homogeneous material which
extends to infinity and in which resides a source as illustrated in Figure 3-2(a). S,
denotes the surface of the peé body and S, denotes the interface between the exterior-
most region and that immediately surrounding the pec body. The dielectric-surrounded
conducting body is illuminated by the incident field (E,H"), which is that field which
would exist if the conductor and its surrounding dielectric were removed and the entire
space were filled with the material of the outer-most region. We develop two models,
one of which is electromagnetically equivalent to the original structure and fields in the

region outside S, and the other of which is equivalent in the region between S, and S, .

(EH) (EH) (ESHY) (ELH)
(p'e ’Ee) §) (l.lt ,SE) )@ ’ (p'd :Ed)
(.29 //’/(u, €) \\\\ ,//’(pf.’id)\\\\
\ 7N \
,/ \ // St ~J go
l\ o l\ (Ed’Hd)/ RN )
\\—1/ \\ Je \\-—// AN Jd
S J S d S
(@ (®) “ ©

Figure 3-2. A conductor coated by dielectric. (a) original problem, (b) exterior
equivalence, (c) interior equivalent problem.

A model equivalent to the original problem in the region exterior to S, is shown
in Figure 3-2(b). In this model all space is filled with the homogeneous material (u,,€,)
of the extérnal medium, the original source is placed in its original position, and an
electric surface current J° is impressed on the imaginary surface S,. The total field in
the region exterior to the surface S, of the original structure can be represented as a

superposition of the incident field and field due to J* as
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E*(r) = E/(r)+ & (r; J°) 0.7)
He(r) = Hi(r) + ¥°(r; J°). (3.8)

Next, a model is constructed in such a way as to be equivalent to the original
structure and field interior toS, and exterior to S,, the bounding surface of the
conductor. All space, including that inside S, is filled with material found in the region
surrounding the conductor and characterized by (1,,€,), as shown in Figure 3-2(c). On
the imaginary surfaces S, and S,, electric surface currents J 4 and J°, respectively, are
introduced. The total field interior to the surface S, and outside of S, is due to J*and

J¢ radiating in concert and can be expressed in the form

E'(r)=¢&‘(r;J*)+&(r;J°) (0.8)
HY(r) = %4 (r; 3%) + % (r; J°). - (0.9) -

Expressing all fields due to currents in terms of potentials, one is ensured that
Maxwell’s equations are satisfied and, using the “outward wave” form of the
homogeneous-space Green’s function in the outer-most region, one is ensured that the
radiation condition is honored. Enforcing continuity of tangential components of the total
electric and magnetic fields at S, and the boundary condition that the total tangential
component of electric field vanish on §,, one adds what is needed to satisfy the
conditions of the uniqueness theorem of electromagnetics and arrives at three coupled
integral equations in terms of the three unknown surface electric currents with the

incident electric and magnetic fields as forcing functions:

[e°(r; ) - €4 (r; 3%) - €2 (; ¢ )]mn = —[E"(r)] , res, (0.10)

tan

[t (9 - 2 (3 -2 (s 1), =-[HE®),, e (0.11)

[e"(r;J")+8"(r;J”)] =05 TES.. (0.12)
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3.4 Disjoint Conductor and Dielectric

Figure 3-3(a) illustrates separate dielectric and conducting bodies. If the two
bodies are allowed to approach one another, one obtains a partially surrounded conductor
or a partially coated conductor. One approach to the problem of a partially coated
conductor is to treat the dielectric and conductor as disjoint but allow them to become
arbitrarily close, i.e., the distance of separation becomes vanishingly small relative to
wavelength. The surfaces may be taken to be in contact or may be thought of as sharing a
common surface or interface. In Figure 3-3(a) S, and S, represent the surfaces of the
separate conducting and dielectric bodies. This composite structure is illuminated by the
incident field (E’,H’). Again making use of equivalent currents, one can postulate two

models for this structure, one valid inside the dielectric and the other outside.

(E<HY) EH) (E<HY) )
("le ,8,) )@ (p'e ’ee) — )§ (Hd :Ed)
- r~ Y4
7/ d / . / \\ 7z /
/ , /7 4 )
(y:80) / (k20 {l {l e )\\\ /// (2
(E%H) & P S ) | k(Ed,H") A
Je 7 \~)IC Jd -’/-’
Sd Sc Sd Sc d
(a) (b) (©)

Figure 3-3.  Disjoint conductor and dielectric. (a) original problem, (b) exterior
equivalence, (c) interior equivalent problem.

A model equivalent to the original problem in the region exterior to S, and S, is
shown in Figure 3-3(b). In this model the dielectric and conducting bodies are replaced
by imaginary surfaces S, andS,, respectively, and the entire region is filled with the
homogeneous material (i,,€,) of the exterior medium. Surface electric current J° and
J¢are impressed on S, and S, respectively. The total field in the region exterior to both
surfaces S, and S, can be expressed as the sum of the incident field and the fields

radiated by the currents J° and J°:
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E‘(r)=E (r)+E(r;I°)+&(r;J°) 0.13)
He(r) = H(r) + ¥°(r; J) + #°(r; J°) . (0.14)

In the model constructed to be equivalent to the original structure interior to.S,,
all space is filled with the material of the dielectric medium (p,,€,) as illustrated in
Figure 3-3(c). On the imaginary surface S,, a surface electric current J ¢ is introduced.

Note that the field interior to the surface S, is due to J* only:
E‘(r)=¢8(r;J%) (0.15)
HY(r)=%4(r;J%) (0.16)
Requiring continuity of tangential electric and magnetic fields at the surface S,

and forcing the tangential component of the electric field to be zero on S, leads to |

[Ee(r;Je)—E"(r;J")+Ee(r;J‘)] =—[ ‘0], res.  ©17)
[xe*(r 39 =3 (0 39 + 2 (s J°)] 8 m)], .res,  (018)
[ee; 3+ &3], = -EWm],,, res. (0.19)

3.5 Conductor and Dielectric Intersecting

Figure 3-4(a) shows a conducting body partially covered by a dielectric ubject.

The surfaces S

ce’

S, and S, refer to the boundaries between the conductor and the
exterior region, the conductor and the dielectric region, and the dielectric and the exterior
region, respectively. The dielectric region is filled with a homogeneous material
characterized by (u,,€,) and is bounded by two surfaces S, and §,. The exterior
region is characterized by (u,,€,) and have an interface with the surfaces §,, and S,,.
The sources are provided in the exterior region only. The total field vectors within the
dielectric and the exterior region are represented by (E¢,H?) and (E®,H?), respectively.
This composite structure is illuminated by the incident field (E',H’). According to the
field equivalence principle one can postulate two models for this structure, one is valid

inside the dielectric and the other outside.
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Figure 3-4.  Conductor and dielectric intersecting. (a) original problem, (b) exterior
equivalence, (c) interior equivalent problem.

A model equivalent to the original problem in the region exterior to S, and S, is
shown in Figure 3-4(b). In this model the entire region is filled with the homogeneous
material (u,,€,) of the exterior medium. Surface electric currents J° and J* are

impressed on S, and S,,, respectively. The total field in this region can be expressed as

ce?

the sum of the incident field and the fields radiated by the currents J° and J*:

E(r) = E'(r)+85(r; ) + £(r; J°) (0.20)
He(r)=H'(@r)+ ¥ (r; J) + ¥°(r; J*). (0.21)

In the model constructed to be equivalent to the original structure interior to S,

and S,,, all space is filled with the material of the dielectric medium (p,,€,) as shown

in Figure 3-4(c). On S, and S,,, surface electric currents J* and J* are introduced,

respectively. The total field in the dielectric region is due to J* and J*:

E’(r)=¢&(r;J*)+£%(r; J) (0.22)
HY(r)=%(r; 7))+ 2% (r; 34). (0.23)

Enforcing the following boundary conditions

E! =0 on S, (0.24)
E; =0 on §,, (0.25)
E! =E: on S, , (0.26)

HY =H® on S, (0.27)
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we obtain the following integral equations written in an operator form in terms of the

equivalent currents as
[8"(r;J")+8"(r;JC")]m =0 ons, (0.28)
[e(x; Je)+8"(r;J“)]m =-E. (r) on S, (0.25)
[8e(r;J")+8€(r;J8) -84 (r; J9) - Ed(r;JCd)]tan =-E! (r) on S, (0.30)

[xel(r;J=)+x=*(r; 1)~ %" (r; 34) - T (r; 3% )]m =-H _(r) on S, (031)

The operator equations from (0.1) through (0.31) are computed from

g% (r; 3% ) = — joA ! — VO (0.32)
¥4 (r; J%%) = L uxas, (0.33)
}‘Le,d ‘

3.6 Numerical Solution

Having formulated the E-field and H-field operator equations for the induced
currents on the surface of pec bodies, we can now determine the interaction of sources
with dielectric bodies or with bodies comprising part dielectric and part conductor. The
operators in the EFIE and the HFIE analysis are exactly those needed for the numerical
solution of homogeneous dielectric bodies, conductors surrounded by dielectric regions,

and conducting bodies partially surrounded by dielectrics.

Dielectric Body. The currents J°and J ?in equation (0.5) are expanded in series
of triangle basis functions and the equations are tested with pulse functions as is outlined
in the description of the method employed to solve the EFIE. Similarly, the currents
J¢and J¢in equation (0.6) are expanded in linear combinations of pulse basis functions
and the equations are point matched as discussed in the section on the HFIE analysis. The
matrix equation for the expansion coefficients for the equivalents currents needed to

determine coupling to a dielectric body can be expressed in the simple form below:
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O = WO 4 A I L

= . (0.34)

- [, 8] D] (L

Solution of (0.34) yields the column vectors [I:]and[f,,"] which are the

coefficients of the basis function expansions of the unknown currents. With these current

known, one can determine all quantities of interest.

Conductor Surrounded by a Dielectric. In the case of a conductor surrounded
by a dielectric, the currents J°, J? and J¢in (0.10) and (0.12) are expanded in triangle
basis functions and the equations are tested with pulse functions. Similarly, the currents
J¢, J¢ and J° in the HFIE of (0.11) are expanded in pulse basis functions and the

equation is point matched. The matrix equation for a dielectric coated pec body becomes

(2], 2], (2], |[12),] [
2], [E21,, Jmhm B | = Bl | ©39
O, (2], (2], [ ] (2]

Disjoint Conductor and Dielectric. Similarly, the matrix equation for the

expansion coefficients associated with a partially coated pec body can be expressed in the

form

[ "]N,de [ "”']N,de [Z:‘"]Ndec [I:]Ndxﬂ —[V"';]Ndxl
2], 8], o] [[F)| = 2| ©39)
[

Zpn ] NN, [O]chN, [Z:m ]N:x N, | L[I: ]ch1 i [V‘ ]N xl |

B

It may be noted that the matrix elements of [ ”"‘]N v [—Zﬁn]N . » and [Ze in
xNg’ aXNg

’""]Ndec

(0.36) represent the tangential component of the scattered electric field, produced by the
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individual basis functions that represent the currents J¢, J ¢ and J° and tested on the

surface S, . Techniques for evaluation of these of these matrix elements are presented in

the EFIE analysis and hence are not repeated here. The matrix elements of [I“,f,ﬁ]N

b
%Ny

-4 , and re represent the tangential components of the scattered
mn fn N, m N XN,

magnetic field produced by the basis functions that represent J°, J 4 and J° and tested

on the surface S,. And the matrix elements of [Z,fm] and [Z,fm] represent the

N, xNy N, xN,

tangential component of the scattered electric field produced by the basis function for J ¢
and J° and tested on S, . The some elements of one of the submatrices are zero since, in

the equivalent model described here, the currents located on the conductor do not interact

with the inner medium of the dielectric object. N, and N, are the numbers of unknown

expansion coefficients on the conducting and dielectric surface, respectively. The matrix
elements of (0.34) and (0.35) are interpreted accordingly. The numerical solution of

(0.28) through (0.31) is performed as in other cases, hence is not given in this section.

From (0.34) to (0.36), the submatrix [Z,’;m] in whicl i implies the characteristics
of the medium, is computed in a way similar to that employed to compute the impedance
matrix elements of the EFIE analysis. The submatrix [F,‘;f is computed in a way
analogous to the method for computing the matrix elements of an HFIE analysis. The

«T | ” signs indicate from which side a point on a surface is approached.

3.7 Results and Discussions

In order to ascertain the correctness of the computer code developed to implement
the integral equation formulation and numerical analysis for the coax-can structure of
Figure 3-8(d), the equations and analysis have been made general, they have been applied

to a number of structures appearing recently in the literature, and the resulting data
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obtained have been compared with data available in the literature. Because of the
generality of the techniques reported here, a number of problems in the literature that
have been solved by other methods can be solved by our method. Several
structures/problems in this category have been selected as cases against which to test our
work. Several are enumerated below and data are presented. In each case, data from the
corresponding solution in the literature are compared and the agreement is found to be
very close, lending support to the correctness of our method. However, no attempt is
made here to present data of other workers for comparison. The various examples

discussed do reveal the versatility of the solution method reported here.

The following are representative structures which can be analyzed by our method
to show the interacti;)n of fields in/on conducting and dielectric bodies of arbitrary shape.
Figure 3-5 to 3-8 illustrate examples of typical physical structures which the numerical
methods presented in this report can be used to analyze. Selected computational results
are included in this section to demonstrate the validity of the above integral equations and
numerical procedure. All data are validated by analyzing a vacuum coating which, of -
course, should reduce to the case of a single conductor in open space. The two
dimensional operators utilized in this chapter and their numerical s.olutions are exactly—'
those found in [55]. The operators for bodies of revolution and their numerical solutions

are those derived in Chapter 1 and Chapter 2.

Figure 3-9 shows the induced currents on the conducting strip covered by a
circular dielectric cylinder [29]. In Figure 3-10 is illustrated the scattered far field pattern
of the same structure [28]. Figure 3-11 shows results of TM plane wave scattering from a
circular conducting cylinder covered by a circular dielectric cylinder [16] while Figure 3-
12 shows data from scattering from a square conducting cylinder covered by square
dielectric cylinder [18]. Figure 3-13 depicts scattered far field patterns due to a TM plane
wave incident on a square dielectric cylinder backed by a conducting strip [15]. In Figure

3.14 one see data illustrating the magnitude of electric current induced on a metal
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backing applied to a portion of the surface of a circular dielectric cylinder excited by a
TM plane wave [29]. In Figures 3-15 to 3-20 are presented electric currents induced on
conducting strips and the corresponding scattered far field data for the problem of a
rectangular dielectric cylinder partially clad by zero thickness conductors and illuminated
by TE and TM plane waves [21]-[22]. The current induced on the pec portion of a
composite circular cylinder comprising a pec “hemi-cylinder” contiguous with dielectric

“hemi-cylinder” illuminated by a TM plane wave is presented in Figure 3-21 [35].

Current induced on a conducting strip partially covered by a circular dielectric
cylinder and excited by a TE and TM plane wave is displayed in Figures 3-22 and 3-23
[25]-[26]. The data in Figure 3-24 correspond to the case when the strip just touches the
dielectric cylinder. In Figure 3-25 is seen data from which one can study the bistatic
scattering cross-section of disjoint circular conducting and circular dielectric cylinders

excited by a TE plane wave [21].

In Figure 3-26 is illustrated the input impedance of a circular top-hat monopole
antenna loaded by a dielectric “plug” and fed by a coax through an infinite ground plane
[52]. The input conductance of a conducting sphere coated by a dielectric layer, plotted
against the thickness of the dielectric layer, is given in Figure 3-27 [53]. Input impedance
of a hemispherical dielectric resonator antenna, which is a monopole embedded in a
hemispherical dielectric material, is presented in Figure 3-28 [45]-[47]. In Figure 3-29
and 3-30 are given the current and input impedance of a monopole antenna in a finite

height dielectric cylinder driven by a coaxial line through an infinite ground plane [38].

3.8 Observations

We considered structures in this chapter involving a conductor and a dielectric
that may be disjoint from each other or may have common surface. A conductor partially
surrounded by, and in contact with, a dielectric is obtained by letting the separation be

arbitrarily close. The analysis remains valid even if the conductor and dielectric are in
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contact or share a common interface. For partially coated and partially clad structures, it
is recommended that the interface or surface between the conducting body and dielectric
body should be partititioned by the same discretization scheme. Using the same
discretization scheme for these common surfaces does not produce a singular moment
matrix because the effects of the different bodies are accounted for by different equivalent
currents used to represent the fields on the conductor and on opposite sides of a material

boundary.

The electromagnetic scattering from a dielectric body partially covered by
vanishingly thin conductors is important in designing microwave printed circuits.
Partially clad structures can be treated in two different ways: (1) equations are formulated
with the conductor c‘:ompletely inside the dielectric body (coated body formulation) or (2)
with dielectric and conductor treated as if disjoint. The partially clad case can then be
obtained by letting the conductors approach the surface of the dielectric from inside or
outside. An important point to note is that the dielectric and conductor are treated no
differently when physically separated from the way they are treated when in contact.
Distinct expansion functions are used for the current on both the models for the

conductor and for the dielectric interface.

The computed results are in excellent agreement with published data available in
the literature. One of the advantages of the present method is that it can generate accurate
results for high dielectric constants. The algorithm developed can easily be extended to
other general cases, such as a body consisting of several piecewise homogeneous material
regions, multiple disjoint bodies, and conducting bodies with multi-layered coating.
Finally, all the effects of surface waves, wedge diffraction, and the interaction between
various dielectric and conducting parts of the system are automatically accounted for in
the analysis. However, the method presented here has several limitations. One practical
limitation is that it cannot be used for very large structures due to excessive computer

time and storage requirements. But this is true of any standard moment method technique.
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Reasonably large structures can be handled with the computer facilities available today.
Theoretical limitations of this model are its failure at certain resonant frequencies. To
circumvent the problem of interior resonance, electric and magnetic equivalent currents
must be used at the dielectric interface and boundary conditions on both tangential

electric and magnetic field must be satisfied [1].
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Figure 3-16. Magnitude of electric currents induced on the conducting strips right on
top and bottom of a rectangular dielectric cylinder illuminated by a TE

plane wave. (a) current on the top plate, (b) current on the bottom plate.
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Figure 3-17. Magnitude of electric currents induced on the conducting strips right on
top and bottom of a rectangular dielectric cylinder illuminated by a TM

plane wave. (a) current on the top plate, (b) current on the bottom plate.
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Figure 3-18. Magnitude of electric currents induced on the conducting strips right on

top and bottom of a rectangular dielectric cylinder illuminated by a TE

plane wave. (a) current on the top plate, (b) current on the bottom plate.
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CHAPTER 4
COUPLING TO A PROBE IN A DIELECTRIC-CAPPED METAL CAN

BY A LASER-LIGHT INDUCED FIELD

4.1 Introduction

In this part we describe a method to compute the coupling of a signal, caused by a
modulated laser beam, to a load impedance terminating a coaxial guide whose center
conductor protrudes into a conducting can, as éuggested in Figure 4-1. The can is a right
circular cylindrical shell with a flat bottom through which protrudes the coax center
conductor. The coax axis is the same as the cyliﬁder axis and its outer conductor
terminates at, and is electrically connected to, the can bottom. The can wall and bottom
are taken to be vanishingly thin and they are perfect conductors, as are the inner andv
outer walls of the coaxial waveguide. We consider one case in which the can is empty
and a second case in which there is a dielectric “plug” in the can. The plug is a solid

dielectric cylinder whose axis coincides with those of the cylindrical shell and the coax.

: .. Laser Light
leplﬁfgmc Excitati%g _

Probe

Figure 4-1.  Probe in a dielectric capped metal can illuminated by a laser light.
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The excitation is the signal radiated by electrons “kicked off” the conducting
surface by an impinging laser beam. The laser is modulated in such a way that the
electrons escaping the surface oscillate harmonically in time causing them to radiate a
coherent signal at an angular frequency @ . For a vanishingly small spot of laser light on
the conducting surface, the radiating source is modeled as an electric dipole normal to
and located at the surface. For a larger spot, the source is taken to be an ensemble of
normal dipoles whose amplitude and phase are dictated by the characteristics of the laser
light and the spot. The laser excited dipoles radiate in the presence of the can and coax
and a signal is induced on the load admittance ¥, terminating the end of the coax remote
from the point where it joins the bottom of the can. It is this signal at the load, as a

function of the laser beam characteristics, that one wishes to determine.

Of course, one can compute the radiation from the dipoles 0;1 the conducting
surface of the can and the coupling to the terminating admittance, but one must be aware
that doing so is not a simple undertaking. The dipoles radiate in the presence of the entire
can-coax structure and, therefore, all parts of the can and coax, together with the
terminating load, must be accounted for simultaneously in any analysis for determining
V,, the signal at the load ¥,. In other words, all parts of the structure are coupled and
each influences the current induced on all surfaces. Fortunately, since one needs to know
the signal only at the load, which electromagnetically speaking occupies a vanishingly
small region of space, one can obtain the desired information by solving a radiation
problem and employing the reciprocity theorem. This is far simpler than it would be to
solve the reception problem directly in which one must allow the laser stimulated dipoles
to radiate in the presence'of the loaded (load admittance Y, in place at the end of the
coax) coax-can structure. Since the can and center-joined coax form a circularly
symmetric structure, the field radiated by the structure due to excitation at the coax
terminal is circularly symmetric, which property allows for simplification in the radiation

problem in addition to what would be true of the reception problem.
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This indirect but less complex technique for determining the signal at the load due
to the laser is carried out in two steps. First, a source is impressed at the location of the
load admittance ¥, at the terminus of the coax and the radiation due to this source is
determined. In particular, one computes the electric field normal to the can-coax surface
at the point where the laser-light-induced dipole resides. From knowledge of this electric
field, the value of the load impedance, and the value of the impressed dipole source, one
can determine the signal induced in the load impedance by invoking the reciprocity
theorem. This technique, though simpler than the more direct method, is completely

rigorous and involves no approximations not employed in the direct procedure.

The solution of the problem of determining the signal induced by a modulated
laser beam at the load admittance ¥;, which terminates the coax of the coéx-can
structure, has been reduced to two steps: (1) computation of the electric field at points on
the coax-can structure where the laser light might fall, caused by TEM excitation at the
coax terminus, and (2) application of the reciprocity theorem to obtain the signal at ¥;
caused by the laser light. The effort to determine radiation from the coax-can structure is,
itself, partitioned into two phases: the first is the computation of the radiated field when
the dielectric plug (Figure 4-Z) is absent and the second is the computation when the plug

is present. Data are presented to illustrate the result of these analyses.

4.2 The Reciprocity Approach

The end goal is to compute, at the end of the coax remote from the monopole, the
voltage and power delivered to the terminal admittance ¥, caused there by an elementary
electric dipole on some part of the surface of the can and monopole structure. To perform
this computation directly is very difficult so we resort to a method that allows us to
realize significant savings with no loss in generality. In principle, the approach developed
to solve this problem is exact and rigorous. Of course, approximations are made but only

when the resulting error is very small.
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The direct approach to solving this problem would be to determine the radiation
due to the elementary dipole on the surface and employ the electric field of this radiation
as the excitation of an integral equation for the current on the can and the monopole. The
integral equation must account for the load at the terminal end of the coax and its effect at
the annular aperture formed where the coax joins the can bottom. And the coupling into
the coax must be computed in order to arrive at a full account of the coax and its terminal
load. The current induced on the can and the monopole surfaces would be a vector
surface density so the integral equation must be a vector equation. The indirect approach
adopted here takes advantage of the reciprocity theorem and allows one to determine the
signal at the coax terminal load from knowledge of the field radiated by the monopole-
can structure under the condition that the excitation results from a current generator
impressed at the terminal end of the coax. This scheme necessitates the formulation and
solution of a simpler integral equation. It is simpler for two reasons. First, the integral
equation is not a vector equation as it would be if the direct procedure were followed and,

second, the equation and its unknown possess rotational symmetry.

In Figure 4-2 is illustrated the coax-fed monopole mounted in the can, together
with an elementary dipole of current moment I/ 3(y ——rd)i located at point r, in space.
An admittance ¥, terminates the end of the coax remote from the monopole and can. The
desired end result, as mentioned above, is the signal induced in the terminating
admittance due to the dipole when the dipole resides on, and is normal to, the can surface.
The dipoles radiates a field which couples with the can and the monopole terminated in
the loaded coax, ultimately causing a signal to appear across Y;. In order to set the stage
for the use of the reciprocity theorem, we now consider a second source and resulting
radiated field. This source is an ideal current generator of /, amperes impressed at the
terminal end of the coax. This current generator, located very close to admittance Y,
produces a signal in the coax which, in turn, excites the monopole and can and gives rise

to a radiated field which we call E¥ (Figure 4-3). A possible structural form that this
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generator and ¥, may take is illustrated in Figure 4-4, while the transmission line model
of this structure and its equivalent circuit are shown in Figure 4-5 and Figure 4-6,

respectively. We let the generator current be a volume current of density
J¥ = -8(z-z,)[I*/2mp] (4.1)

impressed at the end of the coax immediately adjacent to the admittance fabricated in
annular form. The current generator is impressed at position z =z, along the coax. The

negative sign on the current simply implies that the current is directed radially inward.

To apply reciprocity, it is instructive to think of two situations or two experiment.
In the first, the impressed generator current I, is turned off (leaving an open circuit) and
the remote dipole radiates a field causing a voltage ¥ to appear across the coax at the
location of the generator and load admittance ¥, as seen in Figure 4-2. Next, the dipole is
removed and the current generator turned on as in Figure 4-3. It excites the coax fqd
monopole and can and causes a field to be radiated, whose electric field is designated E*.

The reciprocity theorem applied to these sources and fields can be stated in the form
J”(E‘-J—E-Jg)dV=ﬂ(ngH—Eng)-ﬁdS (4.2)
v N

where ¥ is the region in which the theorem applies and S is the closed surface bounding
this region. J¢ and J are sources which acting alone produce fields (E2,H?) and (E,H),
respectively. For our case, ¥ is defined to be the volume inside the coax, the body of the
can, outside the wire probe (and the center conductor of coax), and inside the (imaginary)

sphere at infinity. Let S=S_+S

pec?

where S, is the sphere at infinity and S,,.is the
remainder of S . Since this antenna structure is a perfect conductor, the surface integral
over its surface §,, is zero, and, due to the radiation condition, the integral over the
sphere at infinity S_ is zero too. Hence, the surface integral of (4.2) is zero and one has

remaining

”_[(Eg-J—E-Jg)dV=o @3
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where E is the electric field caused (everywhere) by the elementary dipole
J=115(r - rd)f radiating in the presence of the structure and J®is given by (4.1). Next
we Evaluate the integrals of (4.3). Since the dipole is a delta function, the first term of

(4.3) is evaluated as

_” Eg-JdV=J'_[JEg-ﬂ[i5(r-rd)]dV=Ili-E8(rd). (4.4)

The coax is operated in its typical way in which all higher order modes are below
cutoff, Thus, the fields and currents in the coax are circularly symmetric which implies
that E is independent of ¢ . Since J* is an annular current concentrated at z=z_, the

second term of (4.3) simplifies immediately to

x b
” E-Jdv=-1, J.——-l—f)-E(p,zg)pdpdd)
| 4 - aznp

x b

=-1, | JEEE°(p’ z,)dpdp=-I} (4.5)

-t a

where U is the potential of the coax center conductor relative to that of the outer

conductor:

Y= -j E,(p,z,)dp . (4.6)

From (4.4) and (4.5) it is clear that one can obtain ¥, the voltage created across
the coax by the dipole with the current generator off, from knowledge of the laser-
induced dipole and the electric field E¥ which results from the current generator applied
at the coax terminus. Finally we apply reciprocity by replacing the integrals of (4.3) by

their equivalent expressions from (4.4) and (4.5) to obtain
Y=-ni-E(r,)/I,. (4.7)

The procedure for using reciprocity for computing the signal at ¥; due to a dipole

induced on the surface of the can or on the monopole is outlined below. . First, one
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assumes a voltage ¥, =1volt across the coaxial aperture and computes the current on the
- mon'opole and can. From knowledge of this cunent," bdriven by a one-volt generator
(¥, =1volt), one can compute the driving point or input admittance Y, at the base of the
monopole. Since the monopole is driven by the coax, Y, serves as the terminating

admittance of the end of the coax where its center conductor becomes the monopole.

Second, one determines the currents on the monopole and can and the field radiated by
the structure under the condition that it is excited by the current generator through the
coaxial transmission line as illustrated in Figures 4-4 and 4-5. From transmission line
theory, it is obvious that the current generator of Figure 4-5 causes the voltage ¥, in the

coaxial aperture at the base of the monopole to be

1+T,

V,= -
4 (v, +I;)(1+1“A e"m)

e (4.8)

in which Bis the propagation factor of the transmission line. I', is the reflection

coefficient at the monopole base

<
—

T, = 4.9)

&

+

—

and Y

v

is the characteristic admittance of the line. V, of (4.8) is the actual voltage
driving the monopole so one can now compute the actual currents on the structure and,
subsequently, the radiated field caused by the current generator in the coax illustrated in
Figure 4-4. This is done by the procedure used to compute the currents with V,=1volt
or one can simply scale all current and field values by the ratio ¥,:1. The last step is to
compute the voltage ¥ across the load ¥, from (4.7). The value computed for ¥ depends
on tﬁe dipole moment JI7 of the dipole induced on the structure surface at r, and the
current I, of the current generator employed in the reciprocity procedure. Recall

that E¥(r, ) is the electric field radiated by the structure when the monopole is driven by

the current generator through the coaxial transmission line.
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Figure 4-6.  The equivalent circuit.




CHAPTER 5
COMPUTATION OF THE NEAR FIELD

5.1 Introduction

In this section we present a method for computing the field in the near vicinity of
an antenna structure. In particular, we present a method to compute the normal
component of the scattered electric field and the tangential component of magnetic field
in the near vicinity and immediately on the antenna structure. Our motivation for
computing this field is the following. Knowledge of the field on the antenna structure
provides a direct means of ascertaining the accuracy of the integral equation solution
since surface quantities can be measured. For instance, if a rotationally symmetric
antenna is excited by a rotationally symmetric source, the total field everywhere is
rotationally symmetric. In this case it is possible to probe the antenna surface without
significantly affecting the field structure. So one can probe relative field strength at
different locations on the antenna surface through a slot oriented in such a way that its
presence does not modify the field from the slotless case. The current and charge
densities induced on the antenna surfaces can be related to components of electric and
magnetic field. These components can, in principle, be computed once the current and

charge on the antenna are known.

5.2 Normal Component of E-Field on the Coax-Fed BOR Antenna

For rotationally symmetric antennas which are excited by a coaxial probe at the
center of the structure, the incident field is the field in the coax aperture. This field can be
modeled by a magnetic frill source [1]-[2]. The total field is the sum of the incident and
scattered fields. The incident field is that due to the magnetic frill source while the
scattered field is due to the induced currents and charges on the conducting BOR surface.

We may express the normal component of the total electric field as
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E-fi=(E' +E°)-i 2.1
where the scattered electﬁc field may be computed from
E' ' =-joA-VO _ (2.2)
in which A and @ are vector and scalar potentials. In the limit as the current bearing

surface is approached from either side, the normal component of the scattered electric

field may be written in terms of current and charge as
E.f=- jnk” J(r')-B G(r,r')dS’ +-‘1§L)—1_U q(r')%;gf—ldS', reS (2.3)
€ € n
N S

where £ = fi- VG is the normal derivative and i is the unit normal vector on the surface.
E°-fi is the component of E° normal to the surface on the side of the surface facing the
region into which f is directed in the above since E*-& is a limiting value. Since the

induced current has only a ¢ directed component,
I)=J)t, | (2.4)

Equation (2.3) rhay now be written as

E: (t)-—mk”J(t )t' - G(r,r')dS" + q(t) jjq(t')?-%ﬁds',r eS. (2.5)
N

The unit vectors are determined to be

A

fi=¢xt=cosyp-siny2, (2.6)
t=sinyp+cosy 2. 2.7
Performing the dot product and the normal derivative in (2.5), one finds that

_ij

Tn
E;(t)z—jz J‘J.J(t ) siny’ cosy cos¢’ —siny cosy ]e
Ty R

pldq)ldtl

+%?+1%'!iq(t’){[(9—p')cosv —(z—2z")siny]

'de', te(0,T). (2.8)
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In (2.8), T is the total arc length of the generating arc and p is the radial displacement
parallel to the xyor pd plane from the BOR axis (z axis) to the general coordinate point
(,0) on the surface of the BOR. It must remembered that E,(f) is a quantity resulting

from taking a limit.

The current in (2.8) is approximated by using the triangle basis functions as
N
2mpJ ()= Y LA, (2) 2.9)
=]

where A (t) is defined in Chapter 1. The I,’s are the known current coefficients
computed in Chapter 1. The charge density at the points ¢ on the generating arc can be

computed from the current coefficients as

. N+1 I —I
/ 2ol T, (), 2.10)
ZTC(DP n=1 An-l/2

q(t) =

in which ® is the operating angular ﬁequéncy. The pulse basis function IT,_,,(¢) is also
defined in.Chapter 1. Using the same indexing and parameterization scheme of the
geometry of the generating arc as in Chapter 1, we are able to compute the normal
component of the scattered electric field along the generating arc from the current

expansion coefficient as

g /R

2nR

N L, T
Ei(t,n)= —j—z—sz In{ j j [siny; cosy, cosd’ —siny,, cosy;] do'drt’
n=1

thoyz — %

bisya T -

JKR _ _
+ [SinY: COS'Y;' cos¢’ _Sil'l'Y,_n COS,Y:]E__ d¢,dt' + _] n S(t tm—1/2) Im Im-l
t, -n 2nR 4nk Pom-1/2 Am—l/z
N+l t, n
n AL o o
+J 8k Zl A, :jl[{[(pm_m —p)cosy,, —(z,4n—2 )smym]

e—ij .
—ddt',  m=1..N+l @11

+2p’ cosy,, sin® (§'/2) 1+ jkR]
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where
R=/(p—p') +(z—2') +4pp'sin®(¢' / 2). (2.12)
The normal component of the incident electric field may be computed from
= E, (p,z)cosy — EX(p,z)siny . (2.13)
5.3 Tangential Component of H-Field on the Coax-Fed BOR Antenna
The scattered magnetic field in terms of induced current may expressed as
s 1
H'=—VxA. (2.14)
1!

In the limit as the current bearing surface is approached from either side, the tangential

component of the scattered magnetic field may be written as [4]

fix H =-;-J(r)+”ﬁxJ(r')xV’G(r,r')dS’ , res. (2.15)
N

For the same current distribution in (2.9), (2.15) takes the following form

Hy(t)= J (t) J- I(p' J,(t’))[((p —p')cosy’' —(z - z")siny’)cos ¢’

+2pcosy’sin’ (¢’ / 2)] [L+ jkR] <

do'dt', t eS. (2.16)

Approximating the current as in (2.9), one may compute the scattered magnetic field from

Im S(t - tm-l/Z)

H ()=
\ 4np,, .,

n=1

+Zl{ | J' | K(tm_l,z,t’d))d¢’dt’+8—1—‘":fuIK(tm_l,z;t’,d)')ddn’dt’ 2.17)

n-112 =T t, -x®

where

K(1,1,9") =[((p—p")cosy’ —(z - 2')siny")cos ¢’

(2.18)
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5.4 Field Distributions

Computer programs were developed to implement the formulations discussed in this part
of the report. Data are generated from these programs for selected cases of interest. In
Figure 5-1 is illustrated the can excited by a coaxial monopole. And shown in Figures 5-2
and 5-3 are values of the field components H,(p.0) and E,(p,0), computed at the
interior bottom of the can surface, along a radial line from the location of the monopole to
the can inner wall. For this example, the operating frequency is below cut-off frequency
of the TM,, mode of the corresponding circular waveguide. Since the can behaves as an
infinite circular wave guide below cutoff, the wave impedance is purely reactive and only
reactive energy is contained in the fields of the can [5]-[6]. In Figures 5-4 and 5-5 are
found plots of the ﬁeld components H,(p,0) and E, (p,0)as functions of normalized
displacement, when the operating frequency of the can is above cut-off frequency of
TM,, mode of the corresponding circular waveguide. In Figures 5-6 and 5-7 are seen the
field components H,(c,z) and E (c,2), computed at the interior wall the can surface.
For this example, the opefating frequency is above cut-off frequency of the TM, mode

of the corresponding circular waveguide.

-z=H
..—C_—-»

-z=h

2a

-z=0
->|55|<-2b ’

Figure 5-1.  Can excited by a coaxial monopole.
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Figure 5-2.  The ¢ -directed magnetic field computed at the bottom surface of the can
along a line from the monopole, at p=a, to the can wall, at p=c (below

cutoff).
2 : :
i Below Cutoff E
0F : :
e 2 E. ................... -
E !
2 !
o 4| S CITRTEN P h=025L --
s H=1.57‘,}\’
Q - . c=0.27
w- -6 T\ T T @ =0.0056) N
. bla=23
o N R REEEEE real-:------------------- R RAEEEEEEEE
a0k l ; l L
0 0.09 0.18 0.27

p/A
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CHAPTER 6
EXPERIMENTAL APPARATUS AND MEASUREMENT

6.1 Introduction

In this section we discuss the apparatus and procedures used to measure current
and charge on structures of interest. The experimental data are used to corroborate the
theoretical data. The measured data discussed in this section are of two forms. One is the
antenna driving-point admittance. Relative measurements are made of the current
(magnetic field) and charge (electric field) induced on the interior surface of the can
bottom and wall. The admittance and the relative electric and magnetic field are
measured subject to the can being excited by a coaxial monopole. These data allow direct
comparison with the data obtained from solutions of the integral equation for the zero

order BOR.

It is very difficult to conduct useful measurements when the ¢oaxial-monopole-
driven can structure resides in open space, since the instrumentation needed to perform
these measurements would disturb the field to be determined. Hence, measured data must
be taken when the coax-can structure is mounted on a ground plane which provides
isolation of the device under test (DUT) from the instrumentation. In this case one can
»access” the interior region of the can bottom through the ground plane without
disturbing the original field structure. The ground plane and can configuration allows one

to employ image theory in the comparison of measured and computed data.

Measurements for the coax-can structure can be readily done without mounting
the can on the ground plane when the operating frequency of the can is sufficiently below
the cut-off frequency of the corresponding circular waveguide formed by the can.
Because the interior fields decay sufficiently below cut-off, as a function of axial

displacement toward the can end, the field that escapes the can is very small and does not
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couple significantly with exterior objects surrounding this experimental model. For this
case one can access the interior region of the can-wall through a short section of an

axially directed thin slot cut in the can-wall without disturbing the field.

In the following sub-sections are found discussions of the apparatus and
instrumentation used to perform the measurements. The measurement probes used and
their construction details are presented and the procedures employed to perform the

measurements are outlined.

6.2 Construction of Can

In Figure 6-2 is shown a tapered edge circular brass disk of thickness 3/8 inch.
This disk serves as the can bottom and is machined to fit the mating recepticle in the
ground plane in the Computational Electromagnetics Laboratory.
red ed; taper hole at
tag,iss dis,l%e ) the ce\nter radial slot

circumferential
slot

Figure 6-1. A circular brass disk used to construct the can bottom.

A tapered hole is drilled at the center of this circular disk for insertion of the of
coaxial monopole. A circumferential slot, approximately 1/8 inch deep and 14.55 cm
inner diameter, is cut in the disk to receive the can wall. This slot was made slightly
thicker than the thickness of the can wall to ensure a snug fit. Along a radial line from a
point close to the hole at the center to a point very close to the can wall, a 1/16 inch radial
slot was cut in the disk to allow access to the interior can bottom. Since the source
(monopole) field inside the can is rotationally invariant, the current in the can bottom is

radially directed and ¢ invariant. This allows one to cut a thin radially directed slot in the
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can bottom (disk) with no resulting disturbance to the disk current. Access to the can’s
interior region for probing the field can be gained through this radially directed thin slot,
which does not significantly alter the field structure. The p-directed slot does not

interfere with the p -directed current on the can interior bottom.

A rectangular brass sheet of thickness 1/16 inch is rolled ‘tqfconstruct the
cylindrical can wall of inner radius 14.55 cm and approximate height of 15 inch. This
cylindrical can wall is then inserted in the circumferential slot of the circular brass disk
and soldered (Figure 6-2). The can wall is then soldered along the vertical joint with aA'
copper strip applied for mechanical strength. The whole structure is then mounted on the
ground plane as schematically suggested in Figure 6-3. The parameters of this
experimental configuration are H=382 cm, a=0456mm, c=14.55cm and b/a‘= 23

for the use in computation. This structure is excited by a coaxial monopole as illustrated.

R
\

; copper
1 e—"| B six?p

tapered edge
brass disk

Figure 6-2.  The disk and the brass sheet used to construct the can-wall.
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Figure 6-3.  The can excited by a coaxial monopole on the ground plane.
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6.3 Construction of the Monopole

Tlustrated in Figure 6-4 are the details of the monopole antennas used in the
measurements. They are constructed from low-loss semi rigid 141 mil coaxial cable. To

~ construct the monopole antenna, the outer conductor and dielectric material are removed
from a section of the coaxial cable. The exposed center conductor of the coaxial line then
serves as the monopole antenna. The feed point is the point where the center conductor
exits the coax. To fit the antenna to the tapered hole at the center of the circular disk plate
(bottom of can), a tapered brass plug is machined to fit over the outer conductor of the
coaxial cable. This plug is soldered to the outer conductor of the coax. The tapered end of

the plug is positioned at the feed point of the antenna as shown in Figure 6-4.

-¢— center conductor

\ § -¢—diskplate

-4—— tapered brass plug

141 mil semi-

¢ rigid coaxial cable

Ig-l -¢——— SMA connector

Figure 6-4.  Construction of monopole antenna (cross-sectional view).

6.4 Construction of Probes

Two types of probes were designed and constructed for this work. One type is for
measuring the charge (or electric field normal to the surface, E, and E,) while the other
type is for measuring the current (or tangential magnetic field, H,). Since the charge

probe must couple to the normal electric field, it is simply a very short monopole type
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probing element. The charge probe may also be viewed as a normal electric dipole
exciting the conducting can. The current probe, on the other hand, must couple to a ¢-
directed magnetic field on the disk surface. Hence, its construction consists of a loop-

antenna type probing element.

Shown in Figure 6-5 is an illustration of a charge or electric field probe [5]. One
charge probe is constructed'from a section of 85 mil semi-rigid coaxial cable. As seen,
the outer conductor and dielectric material were removed from a section of the cable to
expose the center conductor. That section is inserted through a hole in a piece of
machined brass stock (1 inch long, 1/2 inch wide, 1/2 inch thick) and the cable is soldered
to the brass stock on the side opposite to the surface through which the monopole
extends. The brass stock was machined so as to have a ridge of approximately 1/ 16 inch
in width of height slightly greater than 3/8 inch. The ridge was designed to ensure that the
probe resides on a surface contiguous with that on which the charge was measured. It also
serves as a guide to ensure that the entire probe assembly can be moved along the slot

with precision.

Platform ——— Top View

[+]
Probe _—~ A
Stand \

85 mil Coax

Raised /—Center Conductor ;
Platform Raised
— Platform

Probe _—" “— Probe
Stand 85 mil Stand
+— Coax —»
Cable

+— SMA —>
Side View End View

Figure 6-5.  Construction of a charge probe.
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Shown in Figure 6-6 is an illustration of a current probe [5]. The design and
construction of the curreﬁt probe is more complicated that that of charge probe. For the
current probe shown, a similar piece of brass stock is machined as discussed above.
However, two holes are drilled through the stock in the ridge along its center line. The
diameter of the holes is slightly larger than that of the 20 mil semi-rigid used for
fabricating the probe. As indicated in Figure 6-6, a small gap in the outer conductor
exposing the dielectric and center conductor of the 20 mil coax is cut in the loop. Away
from the gap, the outer conductor is retained and soldered to the brass stock at the hole.
Further, the end of the center conductor of the 20 mil coax is also soldered to the brass
stock. The purpose of this so-called shielded loop with the gap in the outer conductor of
the 20 mil cable at ‘the center of the loop is to allow coupling only to the ¢ -directed
magnetic field but to reject any coupling to the derivative of the normal electric field. The
presence of the probe outer conductor serves as a shield to minimize charge coupling
while allowing current coupling. To physically support the structure, a small diametér
brass tubing is soldered at one end to the underside of the brass ridge. The 20 mil cable
was inserted through the tube. The resulting structure was finally connected to a right-

angle SMA connector as indicated in Figure 6-6.

Platfrom ———» o
1

Probe __V
Stand \—
Gap 20 mil Coax
Brass j‘—/_ /
Tub!
uve Raisad
’_lﬂ_lil'/ Platform

.! \
20 mil Coax Probe X

Center Conductor Stand
. Gap Raised
/ / Platform
Right-Angle

SMA Connector

Figure 6-6.  Construction of current probe.
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6.5 Probing the Can Wall

For measuring the charge and current on the interior can wall below cut-off, the
finite cylindrical brass tube (can), the monopole, and the probes of [5] are assembled into
an experimental model. Along the wall of this can a short thin slot has been cut parallel
to the axis of the can ( z -axis) to allow access to the interior can wall. Since the source
(monopole) field inside the can is rotationally invariant the current in the can wall is
axially directed and ¢ invariant. This allows one to cut a thin z-directed slot in the can
wall with no resulting disturbance to the wall current. Access to the can’s interior region
for probing the field can be gained through this z -directed thin slot, which does not
significantly alter the field structure since the probe and z -directed slot do not interfere
with the z -directed éurrent on the can interior wall. The parameters for this configuration
are H=50 cm, a=0456mm, ¢=635cm and b/a =23 (see Figure 6-3). This structure

is excited by a coaxial monopole of height =126 cm.

6.6 Probing the Can Wall with Dielectric Loading

The can described in [5] and illustrated in Figure 6-7 is used for measuring wall
charge and current when dielectric loading is prescnt. Again, the operating frequencyAis
below the cut-off frequency of the corresponding circular waveguide loaded with the
same dielectric material. Dielectric loading of the can be obtained by immersing the can
into a container filled with a liquid dielectric material as shown in Figure 6-7. The
dielectrip material used in this measurement should be of liquid type since it allows us to
vary the height of the dielectric/air interface easily. Also measuring probes can move
freely through this liquid dielectric material. Other than the introduction of the dielectric
material, the equipment and apparatus used in this measurement are exactly the same as
those discussed in [5]. Isopropanol is used in this experiment as the dielectric material
because it has a relatively well understood dielectric constant and loss tangent. The

dielectric constant of Isopropanol is less that 20 depending on the operating frequency. It




100

has also frequency dependent loss. Therefore, one must take the known frequency

dependent electrical characteristics of Isopropanol into account when obtaining computed

can NETWORK
\‘ ANALYZER
PORT1 PORT 2
?obe )

monopole > ?

A /
71

Figure 6-7.  Can-wall probing with dielectric loading.

or measured data.

isopropanol

The equivalent parameters corresponding to the experimental set-up of Figure 6-7 are
shown in Figure 6-8 for use in the computations. The parameters are as follows:
H=50cm, a=0456mm, ¢=635cm, d=10cm and b/a=23 (Figure 6-8). This

structure is excited by a coaxial probe of height 7=12.6 cm.

oy B
=
__ b
W
-z=0

RN

Figure 6-8.  Can-coax structure loaded with dielectric material.
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6.7 The Instrumentation and Measurements

The basic instrumentation utilized to perform the measurements is schematically
shown in Figure 6-9. As illustrated, the system consists of a HP Vector Microwave
network analyzer, a PC-AT computer controller and the device under test (DUT). The
analyzer is connected to a PC having a general-purpose-interface-bus (HPIB). The PC
computer is used as a controller to command the network analyzer to take appropriate
measurements and to send the measured data over the HPIB for further manipulation on
the computer. The network amalyzer system is used to make swept frequency
measurements over frequency ranges prescribed by the user. The schematic for probing
charge and current on the can bottom is illustrated in Figure 6-10(a) while Figure 6-10(b)

shows the schematic for can wall probing.

HPIB HP 8718C HPIB
NETWORK DUT
ANALYZER

(=}

11
- |0
—

Sl

PCAT

Figure 6-9.  Block diagram showing measurement apparatus.

The monopole antenna admittance is measured over the frequency range from 300
MHz to 3000 MHz for the can mounted in the ground plane (Figures 6-2 and 6-3). The
cut-off frequency of this structure occurs around 790 MHz. However, the admittance
measurement is performed over the frequency range from 100 MHz to 1000 MHz for the
can below cut-off [5] of Figure 6-7. The cut-off frequency of this can occurs around 1800
MHz. It has been observed that the fields inside decays rapidly beyond the point at which

the monopole ends.

For the field measurements, data have been taken over the frequency ranges of

interest at increments of 0.5 cm along the radial slot at the can bottom while the data are
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taken at 1 cm increments along the axial slot. Since the absolute response of the
speciﬁcally designed and constructed field probes is not known, the measured data were
normalized by a complex constant at a specified frequency to facilitate comparison
against the computed data. Since we don’t know the phase reference when measuring the
reiative fields, to match the phase reference of the computed data, the measured data is
nbrmalized by a complex constant at the point where the maximum or local maximum

response occurred.

Ground plane
NETWORK L, can
ANALYZER
NETWORK
PORT 1 POT;’Z ANALYZER
? monopole POR” PORT2
—— o ? probe
I A
probe -~ T
| monopole
(a) (b)

Figure 6-10. Apparatus/setup used for probing the fields (2) at the can-bottom (b).at the -~

can wall.

The magnitude and phase of the scattering parameters S;, and S, or (S,, and
S,,) are measured in this set-up. From the measured data of S;;, the input impedance of
the strﬁctures were calculated according to the method described in [5]. The §,
measured data is used for determining the relative current and charge. Measurements
along the thin slots were made for a variety of antenna configurations and different
monopole lengths. Thin wire antenna length of £ =12.6 cm is used for the below cut-off
measurements, while thin wire antennas of lengths A=131cm and h=269cmcm are

used for ground plane measurements.




CHAPTER 7

DISCUSSION OF RESULTS AND CORROBORATION OF THEORY

For the purpose of corroborating the accuracy of the data obtained from the
theoretical analysis set forth in this report, we present and discuss comparisons of
computed and measured data. The computed data presented are obtained from numerical
solutions of the integral equation formulated in this report. The measured data presented
were obtained from experiments as described in section 6. As discussed previously, two
types of comparative data are presented to lend plausibility to the validity of the
theoretical and numerical aspects of this work. The first set of data-is of driving point
admittance. The next data are of the values of relative field strength (referred to in the
plots as the normalized electric and mégnetic fields) on the interior can bottom and can
wall. The comparative data presented in this section confirm the accuracy of tﬁe

numerical solutions obtained in this report.

Shown in Figures 7-1 and 7-2 are real and imagi_nary parts of the measured
(dashed lines) and ccmputed (solid lines) driving point admittance for a 13.1 cm long
monopole antenna exciting the can over the frequency range from 300 MHz to 3000
MHz. The data of Figure 7-3 and 7-4 show the real and imaginary parts of the measured
and computed driving point admittance when the can is excited by a 29.6 cm long
monopole antenna. While the measured data for the 13.1 cm long monopole antenna
shows excellent agreement with the computed, the measured data for the 29.6 cm long
monopole antenna follow the general trends of the theoretical data closely but the
agreement can only be claimed to be “good.” The discrepancies at certain frequencies are
attributed to faulty orientation of the 29.6 cm monopole antenna. That is, complete

rotational symmetry is not obtained because the very long monopole is slightly bent.

.(When the exciting antenna is curved rotationally symmetry of the fields is
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compromised.) In this case, a ¢- directed current is induced on the experimental
structure and is not accounted for in the theoretical model. The monopoles were formed
by removing the outer conductor and dielectric of a section of semi-rigid coaxial cable.
We simply were not able to keep the center conductor straight when more than about 15

cm of outer conductor and dielectric were removed.

The can is below cut-off when operated below 790 MHz. Because the can is
operated below cutoff frequency of the TMy, mode of corresponding the circular
waveguide, power cannot be delivered to the can by the monopole and the real part of the
driving point admittance is zero (at least for the computed part since loss effects are not
modeled). So, since power cannot escape the can structure excited by the monppole
antenna operating below cutoff, the monopole must present a purely reactive load to the
generator. Thus driving point admittance of the antenna should exhibit the characteristics

described in [5] for a lossless structure.

The measured real part of input admittance in a very narrow band about 469 MHz
is very large relative to that at other frequencies, even though this frequency is below the
cut-off frequency of 790 MHz. The computed value of this real input admittance is very
very small and is quite different from the measured. Since this operating frequency is
below cut-off, no energy should leak from the canm, which observation appears
inconsistent with the significant value of real Yin, which implies that power is being
supplied to the monopole. At 469 MHz, the monopole and its image effectively form a
straight segment which is 3/2 A long. Under this condition the monopole is resonant and
its current is very large. This very large current strongly excites the can and, hence, the
losses in the monopole and can are much much greater than at other non-resonant
frequencies. The large real Yin is, indeed, consistent with significant power delivered
through the monopole to supply the losses experienced in the finitely-conducting material

from which the can and monopole are fabricated. The computed values of real Yin do not
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exhibit this behavior because the integral equation is formulated on the basis of the
assumption that the monopole and can are perfect conductors and, therefore, are lossless.

This divergence of measured and computed values is expected and explicable.

Figure 4.5 and 4.6 show the relative magnitudes of computed electric field
strength at the bottom of the can along a line from the location of the coax cénter to the
can wall. In Figures 7-7 to 7-11 are depicted real and imaginary parts of the measured and
computed normalized z-directed electric field strengths at the inner surface of the can
bottom for the 13.1 cm long monopole antenna exciting the can at selected frequencies.
The measured data shown in these figures are normalized by a complex constant at a
selected position along the radial slot, so as to be equal to the computed data at this
position. The measured data show excellent agreement with the computed results. This
normalization is done to aid the reader who wishes to compare measured and computed
data. It is not feasible to calibrate the charge and current probes for absolute magnitude
and phase. The basis of the normalization is that one assumes the measured and
calculated values to be equal at a single point and then compares the two sets of data at

other points along the range (displacement) of measurements.

Figures 7-12 to 7-17 illustrate real and imaginary parts of the measured and
computed z-directed electric field strengths at the inner surface of the can bottom for the
26.9 cm long monopole antenna exciting the can at selected frequencies. The agreement
between computed and measured data in this case, while excellent at low frequencies, is
not as gbod as the agreement of the data shown for the 13.1 cm long monopole antenna at
higher frequencies. The poorer agreement is due to unintended curvature of the 26.9 cm
long monopole antenna and to the noisy measured data at some frequencies at which the
physical parameters cause the input impedance to be high and, hence, the coupling from
the signal generator to the structure to be very weak. Under these conditions the measured

signal is weak and not sufficiently above the noise for reliable data. In addition, at
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higher frequencies the wavelength is shorter and, hence, the deviation of the curved
monopole from a straight line is greater relative to waveiength. As a result the curvature

of the monopole has a more dramatic effect on the measurements.

Figures 7-18 to 7-24 show real and imaginary parts of the measured and computed
relative magnetic field strengths at the can bottom for the 13.1 cm long monopole antenna
exciting the can at selected ﬁequenciéé. Figures 7-21 and 7-22 show the same data for the
26.9 cm long monopole antenna exciting the can. The agreement between computed and
measured data in this case is very good for both monopole lengths. However, for the data
of the 29.6 cm long monopole antenna, there are discrepancies at certain frequencies
attributable to failure of the monopole to be straight and to the weak signal relative to the
noise floor. In Figures 7-23 to 7-26 are shown of real and imaginary parts of the
measured and computed normalized p-directed electric field strengths at the inner
surface of the can wall for the 12.6 cm long monopole antenna exciting the can at selected
frequencies. The measured data shown in these figures are normalized so as to match the
computed data at one point along the slot. The measured data show excellent agreement
with the computed results. Notice that, since the can is operated below cut-off (1800
MH?z), the actual data for the z-directed electric field should have zero imaginary part as

suggested in Figures 7-23 to 3-25.

Iﬁ Figures 7;27 to 7-29 afe iliustrafed real and imaginargl parts of the measured
and computed normalized ¢ -directed magnetic field strengths on the inner surface of the
can wall. The measured data show excellent agreement with the computed results. In this
case,‘ since the can is operated below cut-off (1800 MHz), the data for the magnetic field

should have zero real part as predicted by the Figures 7-27 and 7-28.

In Figure 7-30 is illustrated the measured radially directed electric field at the can
wall when the can is loaded by isopropanol. In Figure 7-31 and 7-32 are illustrated

computed and measured data for dielectric loaded (isopropanol) can. The measured and
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computed data agree reasonably well. The discrepancies between the measured and
computed data are attributed to approximate representation of the dielectric constant of
isopropanol in the computation and to the weak coupling of field during the

measurement.
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CHAPTER 8
FIELDS AT THE FOCAL POINT OF A REFLECTOR ANTENNA DUE

TO LASER LIGHT ILLUMINATION

8.1 Introduction

In this section we describe a method to compute the field that would be created at
the focal point of a reflector antenna due to illumination by the light of a modulated laser.
A conducting parabolic reflector, illuminated by a modulated laser-light, is illustrated in
Figure 8-1. The reflector surface is assumed to be vanishingly thin. With the addition of a
feed or collector at the focal point of the paraboloid, one has a standard reflector antenna.
The excitation is the signal radiated by electrons “kicked off” the conducting surface by
an impinging laser beam. The laser excited dipoles radiate in the presence of reflector. It
is the signal ‘at the focal point of the reflector antenna, as a function of the laser beam
characteristics, that one wishes to determine. This is accomplished by a procedure similar
to that described in Chapter 4. Fortunately, since one needs to know the signal only at the
focal point, which electromagnetically speaking occupies a vanishingly small region of
space, one can obtain the desired information by solving a radiation problem and

employing the reciprocity theorem.

. — Feed or Collector Point

Laser Light
Excitation

Parabolic Dish

Figure 8-1. Parabolic reflector antenna illuminated by a modulated laser-light.
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8.2 The Reciprocity Approach

The end goal is to compute the field that would be created at the focal point of a
reflector antenna due to the excitation caused by an elementary electric dipole normal to
and located at the surface of the reflector. To perform this computation directly is very
difficult so we resort to a method that allows us to realize significant savings with no loss

in generality. The approach developed to solve this problem is exact and rigorous.

The direct approach to solving this problem would be to determine the radiation
due to the elementary dipole on the surface and employ the electric field of this radiation
as the excitation of an integral equation for the current on the reflector antenna. The
integral equation must also account for the collector or feed placed at the focal point. And
the coupling with the collector must be computed in order to take full account of the
reflector and its feed structure. The current induced on the reflector-feed surface would be

a vector surface density so the desired integral equation must be a vector equation.

The indirect approach adopted here takes advantage of the reciprocity theorem -
and allows one to determine the signal received at the focal point from knowledge of the
field radiated by the reﬂecfor antenna under the condition that the excitation results from
a z-directed elementary dipole impressed at the focal point. This scheme allows the
formulation and solution of a simpler integral equation. It is simpler for two reasons.
First, the integrai equation is ﬁot a vector equation as would be necessary 1f the direcf

procedure were followed and, second, the equation and its unknown possess rotational

symmetry.

The solution of the problem of determining the signal by a modulated laser beam
at the focal point, is reduced to two steps: (1) computation of the electric field at points
on the reflector where the laser light might fall, caused by an axially directed dipole

excitation at the focal point, and (2) application of the reciprocity theorem to obtain the
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signal at the focal point caused by the laser light. Data are presented to illustrate the

result of these analyses.

Reciprocity can be used to determine transmitting or receiving properties of a
feed-reflector combination from the transmitting properties of the feed by itself or the
receiving properties of the reflector by itself for a point-source feed. In theory, the
transmitting problem for a feed-reflector combination is easier to solve than is the
receiving problem for the same combination. Therefore the transmitting boundary value
problem should be solved first in order to determine the transmitting properties of the
feed-reflector combination. The receiving properties can then be obtained from the

reciprocity theorem.

In Figure 8-2 is illustrated in cross-section a reflector antenna, together with an
elementary dipole of current moment 8(r —r,)fi located at point r, and normal to the
surface. The desired end result, as mentioned above, is the signal at the focal point due fo
the dipole when the dipole resides on, and is normal to, the reflector surface. The dipole
radiates a field which may couple with a collector antenna at the focal point. In order to
set the stage for the use of the reciprocity thecrem, we now consider a second source and
its resulting radiated field. This source is a z-directed elementary dipole impressed at the
focal point. This dipole at the focal point produces a radiated electric field which we call

EZ.

C)D aperture plane
focal point 1

Figure 8-2. A cross sectional view of a conducting parabolic reflector antenna excited
by an elementary electric dipole located on and normal to its surface.
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It is instructive to think of two situations or two experiments. In the first, the
normal dipole on the surface J=58(r —r,) radiates a field causing an electric field E to
appear at the focal point. This field is sought. Next, the dipole is removed and the a z-
directed electric dipole of current moment 8(r —z,2)Z is placed at the focal point as seen
in Figure 8-3.

z

+

$5r-2)2

\\ focal point

Figure 8-3.  The reflector excited by a z-directed electric dipole at the focal point.

This electric dipole excites the antenna and causes a field to be radiated, whose
electric field is designated Ef. The reciprocity theorem applied to these sources and

fields can be stated in the form

J'”(Eg-J—E-Jg)dho 8.1)

where E is the electric field caused (everywhere) by the elementary dipole J=8(r —~r,) il
at the surface radiating in the presence of the structure. The current J¥ =8(r —z,2)Z is

the impressed current at the focal point. We then evaluate the integrals of (8.1) as

[[[E-9% a7 = [[[E-5(c - 2,212V ~E(z12)- 2 62)
[[fEe-3av = [[[Ee 280 -1, ¥ =5-E*(x,). ®3)

Equating the integrals of (8.2) and (8.3), we obtain

E,(2,)=E}(x,). ‘ (8.4)
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E,(z,) is the z-component of electric field at the focal point that would be created by the

dipole on the surface of the antenna. E,(z,) is the quantity of interest.

8.3 Results and Discussion

We first perform the computations for a conducting disk instead of a conducting
reflector. Since a conducting disk with large radius compared to wavelength
approximates a ground plane, we can use image theory to check the computed results. In
Figures 8-4 and 8-5 are illustrated the current density and the total cﬁrrent for a
conducting disk of radius @ =3\ illuminated by an electric dipole at different heights. In
Figures 8-6 and 8-7 are illustrated the current density and the total current for conducting
disk of different radii, illuminated by an electric dipole at 4 = 3\ . In Figure 8-8 is offered
a comparison of computed data of the current density on the disk with data determined
from image theory subject to the approximation that the disk is a ground plane of infinite

extent. The data of Figure 8-8 suggest that the computations are accurate.

Figure 8-9 to 8-13 show computed z-directed electric field on the disk of radius
a =3\ together with values approximated by image theory. Observe that the closer the
dipole is to the surface of the conducting disk the better comparison with the data of
image theory. The results of Figures 8-9 to 8-13 lend support to the claim that the

computation procedure is correct and accurate.

Figures 8-14 to 8-17 show the total current induced on the surface of the reflector antenna
due to a dipole at the focal point. The plots are provided for various reflector sizes. The
parabolic reflector surface is defined by

p2
=—, p< 8.5
z v, p<a (8.5)

where p is the radial displacement from the apex, f is the focal distance (distance from

apex to the focal point) and a is the radius of the reflector as suggested in Figure 8-2 .
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Figures 8-18 to 8-23 show the normal electric field on the surface of the reflector
antenna due to a dipole at the focal point for various reﬂéétor sizes. It is observed that, for
a fixed radius reflector, the electric field intensity increases all along the reflector surface
as the focal length is reduced. This is consistent with one’s intuition. Reciprocity allows
us to interpret this result in another way. For a fixed radius, the electric field intensity at
the focal point increases as the focal length is reduced for all dipole locations all along the
reflector surface. It is also observed that, for a fixed focal length, the electric field
intensity is not strongly effected. The varigtion in electric field is due only to the

operating frequency of the dipole.

The normal electric field at a point r, on the parabola due to a z-directed dipole of
unity strength at the focal point is the same as the desired 2-directed electric field at the
focus due to a unity strength dipole normal to the surface at r,. This is the meaning of
equation (8.4). Hence the data of Figure 8-18 to 8-23 can be interpreted as z-directed
electric field at the focus due to a unity strength dipole normal to the surface at r,. For
the convenience of the reader these data are presented again in Figures 8-24 to 8-29 but
with labels which suggest that E,(z,) at the focus is created by a normal dipole of unity

strength on the reflector surface at distance p from the parabola axis.
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Figure 8-8.  Computed current density on the disk compared with image theory.
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Figure 8-9. A comparison of computed and image theory data of z-directed electric
field on the disk for 2=03X.
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Figure 8-10. A comparison of computed and image theory data of z-directed electric
field on the disk for 2 =0.6A .
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Figure 8-11. A comparison of computed and image theory data of z-directed electric
field on the disk for #=09A. ‘
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Figure 8-12. A comparison of computed and image theory data of z-directed electric
field on the disk for 2 =2A .
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Figure 8-16. Current on the surface of the reflector due to dipole excitation for f =3A.
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Figure 8-17. Current on the surface of the reflector due to dipole excitation for /=2
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Figure 8-19. Normal electric field on the surface of the reflector antenna for a = A .
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Figure 8-20. Normal electric field on the surface of the reflector antenna for a = 2.5X..
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Figure 8-26. Electric field (z-directed) at the focal point of the reflector for a =2.5A .
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Figure 8-27. Electric field (z-directed) at the focal point of the reflector for a = 5A.
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Figure 8-29. Electric field (z-directed) at the focal point of the reflector for f
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